• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.027 seconds

Design of isolated footings of circular form using a new model

  • Rojas, Arnulfo Luevanos
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.767-786
    • /
    • 2014
  • This paper presents the design of reinforced concrete circular footings subjected to axial load and bending in two directions using a new model. The new model considers the soil real pressure acting on contact surface of the circular footings and these are different, with a linear variation in the contact area, these pressures are presented in terms of the axial load, moments around the axis "X" and the axis "Y". The classical model takes into account only the maximum pressure of the soil for design of footings and it is considered uniform at all points of contact area. Also, a comparison is presented in terms of the materials used (steel and concrete) between the two models shown in table, being greater the classical model with respect the new model. Therefore, the new model is the most appropriate, since it is more economic and also is adjusted to real conditions.

Modeling and Optimization of Rice Drying and Storage System in Korea(I) -Layout and Design of Model System- (한국에 있어서 미곡(米穀)의 건조(乾燥) 및 저장(貯藏)을 위한 시스템의 모델 개발 및 적정규모 선정에 관한 연구(I) -모델 시스템의 Layout 및 설계-)

  • Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.66-75
    • /
    • 1986
  • In order to improve the traditional post harvest system in Korea, a model for mechanized grain drying and storage facilities was developed. Also, a computer program for the model system was developed. For the study, flat type steel bin and circulation type dryer were selected for the model and Fortran language was used for the computer program. This program was tested by using various practical data. The following results were obtained from the study: 1. The general model developed can be used for designing a rough rice drying and storage facility within the range from 100 ton to 1000 ton capacity. 2. Major output of the computer program for designing a model system were as follow; a. The dimension of the plant. b. The storage bin size, dryer number and dryer size. c. The dimension of individual equipment and its required HP. d. Capital requirement and operating cost of the model system.

  • PDF

Comparison of Design Standards for Seismic Design of Steel Liquid Storage Tanks (강재 액체저장탱크의 내진설계를 위한 설계기준 분석)

  • Bae, Doobyong;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, it is carried out to analyze the international design standards such as Eurocode 8, API 650, NZSEE and etc for the seismic design of steel liquid storage tanks. From the comparison and analysis, the data for the required parameters and factors are provided for the establishment of Korean seismic design standard for steel liquid storage tanks. The simplified mechanical models have been presented for the seismic design of steel liquid storage tanks in all design standards and the parameters of mechanical models in design standards have similar values. Although the models for the seismic design of steel liquid storage tanks are similar in design standards, design approaches are given differently in accordance with the design methods, allowable stress design or limit state design. Therefore it is not easy to compare seismic forces presented in design standards directly. After comparison of design standards, it is concluded that establishment of Korean design standard for the seismic design of steel liquid storage tanks is necessary.

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

Longitudinal Behavior of Prestressed Steel-Box-Girder Bridge (프리스트레스를 도입한 강합성형 교량의 교축방향 거동)

  • Park, Nam Hoi;Kang, Young Jong;Lee, Man Seop;Go, Seok Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.321-329
    • /
    • 2003
  • To effectively use the cross section of concrete decks, analytical and experimental studies on prestressed steel-box-girder bridges were performed in this study. The method of applying prestress was determined in the analytical study and the longitudinal behavior of the prestressed steel-box-girder bridge was considered in the experimental study. The object model for these studies was a two-span continuous bridge. The method of applying prestress determined herein was divided into two parts: one is that apply prestress to the concrete deck at its intermediate support, and the other is that apply prestress to the lower flange of the steel-box-girder bridge at its end support. The prototype bridge for the experiment was simulated based on the rule of similitude and was fabricated according to construction steps to apply prestress effectively. From the results of the experimental study, it has demonstrated that the prestressed steel-box-girder bridge provides better performance than the general steel-box-girder bridge in view of the increase of the design live load, the reduction of the tensile stress of the concrete deck at intermediate support, and the reduction of the displacement.

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

A Study on the Controlled-source Electromagnetic Responses Incorporating the Steel Casing (시추공 케이싱을 고려한 인공송신원 전자탐사 반응 고찰)

  • Oh, Seokmin;Noh, Kyubo;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.216-225
    • /
    • 2017
  • Recently, steel casing became an interesting issue when applying controlled-source electromagnetic (EM) method to various fields because effects of steel casing on EM responses are not negligible. This study employed an approach that approximates the steel casing as a series of electric dipole sources in order to develop the numerical algorithm for the efficient simulation of EM responses in the presence of steel casing. After verifying the validity of the developed algorithm, we analyze effects of steel casing on EM responses with the synthetic model simulating geothermal reservoir environment. The analysis showed that the effects of steel casing on EM responses are localized near the casing and increase as the transmitter becomes close to the casing. In addition, through the analysis on the EM responses by the injection of clean water, we confirm that the effects of casing are negligible when interpreting the after-injection data acquired using the transmitter located far enough from the casing. Considering the difference in EM responses between before and after injection in inversion, the effects of the casing can be neglected although after-injection data shows considerable difference due to the close distance between the transmitter and casing. To investigate this kind steel casing effect, the precise analysis on EM responses should be preceded. The algorithm introduced in this study will contribute to the reliable calculations of EM responses distorted by the conductive steel casing.

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete (후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성)

  • Kim, Dong-Hui;Jang, Seok-Joon;Kim, Sun-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.40-47
    • /
    • 2021
  • This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.