DOI QR코드

DOI QR Code

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers

강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구

  • Kim, Sun Hee (Department of Architectural Engineering, University of Seoul) ;
  • Yom, Kong Soo (Harmony Structural Engineering) ;
  • Kim, Yong Hwan (Department of Architectural Design, Kyun-dong University) ;
  • Choi, Sung Mo (Department of Architectural Engineering, University of Seoul)
  • 김선희 (서울시립대학교, 건축공학부) ;
  • 염경수 ((주)하모니구조엔지니어링) ;
  • 김용환 (경동대학교, 건축디자인학부) ;
  • 최성모 (서울시립대학교, 건축학부)
  • Received : 2015.06.22
  • Accepted : 2016.01.13
  • Published : 2016.02.27

Abstract

Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.

콘크리트 충전강관 기둥은 강관의 구속효과에 의해 콘크리트의 압축내력 상승과, 콘크리트에 의한 강관의 국부좌굴 보강효과에 의해 부재내력이 상승하고 뛰어난 변형성능을 발휘한다. 하지만, 기둥단면이 커질 경우 합성효과를 발휘하기 위하여 스터드 볼트나 후 시공 앵커 볼트를 사용해야 하는 시공상의 문제점이 발생된다. 이를 극복함과 동시에 합성효과를 증대시키기 위한 방안으로 내부에 리브가 설치된 용접조립 기둥이 소개되었다. 내부 리브는 콘크리트와 맞물려 있어 리브의 변형은 콘크리트의 균열을 촉진시키는 역할을 동반하게 된다. 이러한 잠재적인 문제에 대한 해결책은 강관 리브의 변형에 저항할 수 있도록 콘크리트 인성을 증가시킬 수 있는 방안이 필요하다. 언급된 두 가지의 문제점이 효과적으로 해결될 경우 용접조립 각형강관 기둥은 내화성능 확보가 가능하다고 판단된다. 본 연구에서는 해결방안으로 내부 콘크리트를 강섬유와 혼입하여 기둥 자체의 연성과 인성을 증대시키는 것에 중점을 맞추고 있다. 내화성능 평가를 위한 시험체는 총 8개 로 하중비에 따른 재하가열 실험을 실시하고 화재 전후 거동과 열 변형 능력을 주요변수별로 분석하였다. 실험결과와 선행연구 비교를 통해 열 전달과 열응력 해석 모델의 신뢰성을 확보하였으며, 강섬유 혼입율에 따른 변수해석을 수행하였다.

Keywords

References

  1. 대한건축학회(2004) 콘크리트 충전강관구조 요설, 기문당. AIK (2004) Concrete Filled Tube (CFT) Structures, The Architectural Institute of Korea, Kimoondang (in Korean).
  2. 한국강구조학회(1999) 충전강관기둥의 내화성능평가 및 설계법에 관한 연구 보고서. KSSC (1999) Research Report on Fire Performance Evaluation and Design of Filled Steel tube Columns, Korea Society of Steel Construction (in Korean).
  3. Kodur, V.K.R. and Mackinnon, D.H. (2000) Design of Concrete Filled Hollow Structural Steel Column for Fire Endurance, Engineering Journal, AISC, Vol.37, No.1, pp.13-24.
  4. Han, H.H., Xhao, X.L., Yang, Y.F., and Feng, J.B. (2003) Experimental Study and Calculation of Fire Resistance of Concrete Filled Hollow Steel Columns, Journal of Structural Engineering ASCE, Vol.129, No.3, pp.346-356. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(346)
  5. Kodur, V.K.R. and Wang, T.C. (2004) Stress-Strain Curve for High Strength Concrete At Elevated Temperature, Journal of Materials in Civil Engineering, Vol.16, No.1, pp.84-94. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84)
  6. Zhou, X. (2007) Effects of Hollowness on Strength of Double Skinned Concrete Filled Steel Tubular Columns of Different Geometries under Axial Loading, Advances in Structural Engineering, 94 pp. 1746-1751.
  7. 구철회, 이철호, 안재권(2013) 화재 시 무피복 CFT 기둥의 축강도 평가를 위한 단면온도분포 예측기법의 개발, 한국강구조학회논문집, 한국강구조학회, 제25권, 제6호, pp.587-599. Koo, C.H., Lee, C.H., and Ahn, J.K. (2013) Prediction of Temperature Distribution to Evaluate Axial Strength of Unprotected Concrete-filled Steel Tubular Columns under Fire, Journal of Korean Society of Steel Construction, KSSC, Vol. 25, No. 6, pp.587-599 (in Korean).
  8. 김해수 이치형(2010) 내화피복종류에 따른 각형 CFT기둥의 온도분포에 관한 실험적 연구, 한국강구조학회논문집, 한국강구조학회, 제 22권, 제6호 pp.523-532. Kim, HS. and Lee, C.H. (2010), An Experimental Study on the Temperature Distribution of Square CFT Columns According to the Types of Fire Protection, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.6, pp.523-532 (in Korean).
  9. 김선희, 염경수, 최성모(2013) 내부 앵커형 콘크리트 충전 기둥의 내력 및 변형 능력에 관한 연구, 한국강구조학회논문집, 한국강구조학회, 제 25권, 제4호, pp.347-357. Kim, S.H., Yom, K.S., and Choi, S.M. (2013) A Study on the Load Carrying Capacity and Deformation capacity of the Internal Anchors Welded Cold Formed Concrete Filled Columns, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.4, pp.347-357 (in Korean).
  10. Kim, S.H., Yom, K.S., and Choi, S.M. (2014) Improving fire Performance with Steel Fibers for Internally Anchored Square Composite Columns, Journal of Constructional Steel Research, Vol.103, pp.264-274. https://doi.org/10.1016/j.jcsr.2014.09.003
  11. 김선희, 염경수, 김용환, 최성모(2014) 내화성능 개선을 위한 강섬유 보강 내부 앵커형 각형강관 합성기둥의 실험연구, 한국강구조학회논문집, 한국강구조학회, Vol.26, No.6, pp.499-509. Kim, S.H., Yom, K.S., Kim, Y.H., and Choi, S.M. (2014) Experimental Study of Improving fire Performance with Steel Fibers for Internally Anchored Square Composite Columns, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.4, Vol.26, No.6, pp.499-509 (in Korean).
  12. Kodur, V.K.R. and Lie, T.T. (1996a) Thermal and Mechanical Properties of Steel Fiber Reinforced Concrete at Elevated Temperatures, Canada Journal Civil Engineering, Vol.23, No.2, pp.511-517. https://doi.org/10.1139/l96-055
  13. Kodur, V.K.R. and Lie, T.T. (1997) Evaluation of fire Resistance of Rectangular Steel Columns Filled with Fiber-Reinforced Concrete, Canadian Journal of Civil Engineering, Vol.24, No.3, pp.339-349. https://doi.org/10.1139/l96-114
  14. Kodur, V.K.R., Lie, T.T. (1996b) Fire Resistance of Circular Steel Ccolumns Filled with Fiber Reinforced Concrete, Journal of Structural Engineering, Vol.122, No.7, pp.776-782. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(776)
  15. 문도영(2013) 고온노출된 강섬유 보강 콘크리트 인장성능에 대한 실험적 연구, 한국방재학회논문집, 한국방재학회, 제13권, 제1호, pp.63-71. Moon, D.Y. (2013) Experimental Study on Tensile Strength of Steel Fiber-Reinforced Concrete Subjected to High Temperature, Journal of the Korean Society of Hazard Mitigation, Vol.13, No.1, pp.63-71 (in Korean).
  16. DIN (1988) Normen AusschuB: Beton und Stahlbetos, Bemussung und Ausfuhrung-DIN 1045, Germany, (in German).
  17. JSCE (1984) Method of tests for flexural strength and flexural toughness of steel-fiber-reinforced concrete, Concrete library of JSCE-SF4: V3, Japan Society of Civil Engineers, Tokyo, pp.58-61 (in Japanese).
  18. Lie, T.T. and Irwin, R.J. (1995) Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete, Journal of structural Engineering May, pp. 797-805.
  19. Ding, J. and Wang, Y.C. (2008) Realistic Modelling of Thermal and Structural Behavior of Unprotected Concrete Filled Tubular Columns in Fire, Journal of Construction Steel Research, Vol.64, No. 10, pp.1086-1102. https://doi.org/10.1016/j.jcsr.2007.09.014
  20. Hong, S.D. and Amit, H.V. (2009) Analytical Modeling of the Standard Behavior of Loaded CFT Columns, Journal of Constructional Steel Research, Vol.65, No. 1, pp.54-69. https://doi.org/10.1016/j.jcsr.2008.04.008
  21. EN 1994-1-1 (1992) Design of Composite Structures, Part1.1 : General Rules for Building.
  22. EN 1991-1-2 (2002) Eurocode-1, Actions on structures - Part 1-2: General actions -Actions on structures exposed to fire.

Cited by

  1. 연속체 모델과 지하구조물 고정단 모델의 비교를 통한 SSI 해석의 타당성 연구 vol.20, pp.5, 2016, https://doi.org/10.9711/ktaj.2018.20.5.757
  2. Experimental Study on the Fire Resistance of Steel-Reinforced Concrete Column in Fire According to Load Ratio vol.31, pp.6, 2016, https://doi.org/10.7781/kjoss.2019.31.6.459