• Title/Summary/Keyword: steel girder bridge

Search Result 599, Processing Time 0.032 seconds

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

Monitoring of a Steel Plate Girder Railroad Bridge with Fiber Bragg Grating Sensors (광섬유 격자센서를 이용한 철도 판형교의 증속 실험)

  • Chung, Won Seok;Kang, Dong Hoon;Choi, Eun Soo;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.681-688
    • /
    • 2005
  • This study investigates an existing steel plate girder railroad bridge after superstructure rehabilitation to monitor static and dynamic responses using Fiber Bragg Grating (FBG) sensors. This paper also presents an experimental technique to estimate the vertical deflection of the bridge using FBG sensors. Seven FBG sensors are multiplexed in a single optical fiber and installed in parallel pairs along the length of the bridge, with one set at the top flange and the other at the bottom flange. In addition to FBG sensors, a conventional electric strain gauge and anLVDT are installed at the mid-span of the bridge for comparison. A test train consisting of one locomotive is placed at the center of the bridge to produce the maximum static effect. The train is also made to pass over the bridge at different speeds ranging from 10 km/h to 90 km/h to monitor the dynamic response of the bridge. This study demonstrates that the measured strains using the FBG sensor compared well with the readings from the electric strain gauge. The results show that the proposed instrumentation technique is capable of estimating the vertical deflection of the bridge for various loading conditions, which is crucial in structural health monitoring. Several dynamic characteristics of the bridge were also identified.

Design Improvements for Crossbeams and Stringers of Steel Box Girder Bridge (강박스거더교 가로보와 세로보 합리화 연구)

  • Gil, Heungbae;Kang, Sang Gyu;Cho, Jun Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • This research carried out to optimize crossbeams and stringers of steel box girder bridges, which are parts of floor system and support loading from the bridge deck. In the current design practice, the crossbeam is densely deployed with a spacing of 6 meters, and the stringer is placed between the crossbeams. The crossbeams and stringer are connected to the deck through slab anchors but the allowable stress of the compression flange is determined by the lateral-torsional buckling. To increase economic efficiency of the steel box girder bridges. the increased spacing of the crossbeam was studied. The study shows that the spacing can be increased up to 10 meters. However, higher strength steel plates are necessary. Shear studs rather than slab anchors are also recommended to prevent lateral-torsional buckling strength of the crossbeams and stringer.

Evaluation for the Running Safety and Ride Comfort of Steel Composite Railway Bridge (강합성 철도교량의 주행안전성 및 승차감 평가)

  • Kim, Jung-Hun;Kang, Young-Jong;Kim, Dea-Hyeok;Han, Sang-Yun;Cha, Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2814-2820
    • /
    • 2011
  • Railway bridge, contact of vehicle needs to design considering the running safety about the running train load of the railway bridge, ride comfort and dynamic safety. Also, upper structure of the railway bridge has to satisfy design standard about moving load(train). So, the railway bridge has to satisfy the requirement for vertical acceleration of the bridge deck, vertical displacement of the bridge and face distortion, which is suggested railway design standard in Korea(2011.5.). In this study, it was investigated and evaluated to the running safety about the running train load of the railway bridge, ride comfort and dynamic safety with railway design standard for steel composite(Steel Box Girder) railway bridge considering KTX, freight train and standard train load.

  • PDF

Comparative Cost Analysis of Repair Method according to Bridge Superstructure Type (교량 상부구조 형식에 따른 보수공법 비용 비교분석)

  • Lee, Changjun;Park, Taeil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.277-278
    • /
    • 2023
  • The need for maintenance of bridge infrastructure is increasing due to aging, and the cost of maintaining the infrastructure must be calculated for effective budget distribution. Therefore, in this study, representative defects according to bridge superstructure type are derived to calculate the cost for each repair method. First of all, the representative bridges, PSCI girder bridge, Rahmen bridge, Steel box girder bridge, and RC slab bridge, were selected as superstructures using BMS data, and repair methods for defects were presented. In addition, the cost of the repair method by superstructure type was compared. This result is expected to predict total maintenance costs in consideration of the maintenance cycle.

  • PDF

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Analysis of Dynamic Responses for Steel Box Girder and I-girder Bridges under Train Loads (강합성 상자형교 및 소수주형 I형 거더교의 철도차량에 대한 동특성 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Ahn, Gi-Chul;Kim, Ok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.954-959
    • /
    • 2011
  • The intensity of train load in the railway bridges is relatively large and continues to repeat. Also, the speed of vehicles is very fast. For these reasons, analyses for dynamic response under train load are necessary in the railway bridges. In other words, the dynamic characteristics of steel-composite bridges under train loads should be investigated considering effects of dynamic responses such as vibrations, repeated displacements and acceleration of bridge members. Therefore, in this study, static and dynamic analyses for the steel box girder bridges and I-girder bridges are carried out. Based on analyses results, we investigated and compared dynamic response considering the impact factors of domestic and foreign design specifications.

  • PDF

Optimum design of multi-span composite box girder bridges using Cuckoo Search algorithm

  • Kaveh, A.;Bakhshpoori, T.;Barkhori, M.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.705-719
    • /
    • 2014
  • Composite steel-concrete box girders are frequently used in bridge construction for their economic and structural advantages. An integrated metaheuristic based optimization procedure is proposed for discrete size optimization of straight multi-span steel box girders with the objective of minimizing the self-weight of girder. The metaheuristic algorithm of choice is the Cuckoo Search (CS) algorithm. The optimum design of a box girder is characterized by geometry, serviceability and ultimate limit states specified by the American Association of State Highway and Transportation Officials (AASHTO). Size optimization of a practical design example investigates the efficiency of this optimization approach and leads to around 15% of saving in material.

A Study on the Spacing and Required Flexural Rigidity of Cross Beams in Composite Two-Steel Girder Bridges (강합성 2-거더교의 가로보 배치 간격 및 소요 휨강성에 관한 연구)

  • Park, Yong Myung;Cho, Hyun Joon;Hwang, Min Oh
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.1-10
    • /
    • 2004
  • A study on the evaluation of proper spacing and required flexural rigidity of cross beams in composite two I-section steel girder bridges without a lateral and sway bracing system was performed. Specifically, a 2-lane, 40-m simple span bridge and a 3-span continuous (40+50+10m) bridge were designed, and structural analyses under dead load before and after composite, live, wind, and seismic loads were performed using spacing and flexural rigidity or cross beams as parameters. Through parametric analysis, the effect on the stresses due to the combination of loads and live load distribution was investigated. In addition. material and geometric nonlinear analyses under dead load before composite were performed to evaluate the lateral buckling strength of the steel girders and cross beam. Based on the results or such analyses, the proper spacing and flexural rigidity of cross beams at intermediate points and supports were proposed.

Field Test to Investigate Lateral Dynamic Characteristics of Steel Plate Girder Railway Bridge without Ballast (무도상 판형교의 횡방향 동적거동특성 분석을 위한 실험적 연구)

  • Oh Ji Taek;Kim Hyun Min;Park Ok Jung;Park Chan
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.591-595
    • /
    • 2003
  • Field measurements were conducted to analysis lateral dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu Line were selected for test. According to the each bridge, dynamic lateral deflections and accelerations were measured. From the present study, it was observed that dynamic lateral amplification phenomena caused by a fluctuation of lateral force were occurred under the current running circumstances. Lateral deflections were occurred below than that specified in Korean railway bridge specification, but lateral accelerations is a match for vertical accelerations. From now on, it is in need a plan to reduce lateral accelerations for the conventional railway Line speed up.

  • PDF