• 제목/요약/키워드: steel frame-tube structure

검색결과 19건 처리시간 0.022초

Simplified Algorithm of the Novel Steel-concrete Mixed Structure under Lateral Load

  • Li, Liang;Li, Guo-qiang;Liu, Yu-shu
    • 국제초고층학회논문집
    • /
    • 제1권4호
    • /
    • pp.247-254
    • /
    • 2012
  • In order to improve the seismic behaviors of traditional steel-concrete mixed structure, a novel steel concrete mixed structure consisting of steel frames braced with buckling restrained braces (BRBs) and a concrete tube is proposed. Based on several assumptions, the simplified mechanical model of the novel mixed structure is established, and the shear and bending stiffness formulas of the steel frames, BRBs and concrete tube are respectively introduced. The equilibrium differential equation of the novel mixed structure under horizontal load is developed based on the structural elastic theory. The simplified algorithms to determine the lateral displacement and internal forces of the novel mixed structure under the inverted-triangle distributed load, uniformly load and top-concentrated load are then obtained considering several boundary conditions and compatible deformation conditions. The effectiveness of the simplified algorithms is verified by FEM comparison.

Simulation of the damping effect of a high-rise CRST frame structure

  • Lu, Xilin;Zhang, Hongmei;Meng, Chunguang
    • Computers and Concrete
    • /
    • 제9권4호
    • /
    • pp.245-255
    • /
    • 2012
  • The damping effect of a Concrete-filled Rectangular Steel Tube (CRST) frame structure is studied in this paper. Viscous dampers are employed to insure the function of the building especially subjected to earthquakes, for some of the main vertical elements of the building are not continuous. The shaking table test of a 1:15 scale model was conducted under different earthquake excitations to recognize the seismic behavior of this building. And the vibration damping effect was also investigated by the shaking table test and the simulation analysis. The nonlinear time-history analysis of the shaking table test model was carried out by the finite element analysis program CANNY. The simulation model was constructed in accordance with the tested one and was analyzed under the same loading condition and the simulation effect was then validated by the tested results. Further more, the simulation analysis of the prototype structure was carried out by the same procedure. Both the simulated and tested results indicate that there are no obvious weak stories on the damping equipped structure, and the dampers can provide the probability of an irregular CRST frame structure to meet the requirements of the design code on energy dissipation and deformation limitation.

철골형 CFT 프레임을 활용한 내진보강 복합공법 개발 (Development of Seismic Strengthening Composite Method using Steel type CFT Frame)

  • 이동운;우종열;박현정
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2018
  • There is a risk that the damage caused by frequent earthquakes can lead to the risk of personal injury due to cracks in buildings and collapse of major structures. Although the seismic design of the new building is designed to be reinforced, the existing structure is not exposed to the risk of earthquake. Therefore, it is aimed to develop the steel frame type CFT composite method which can easily reinforce the CFT structural system with excellent seismic performance against the old non - seismic structure.

  • PDF

Finite element analysis for the seismic performance of steel frame-tube structures with replaceable shear links

  • Lian, Ming;Zhang, Hao;Cheng, Qianqian;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.365-382
    • /
    • 2019
  • In steel frame-tube structures (SFTSs) the application of flexural beam is not suitable for the beam with span-to-depth ratio lower than five because the plastic hinges at beam-ends can not be developed properly. This can lead to lower ductility and energy dissipation capacity of the SFTS. To address this problem, a replaceable shear link, acting as a ductile fuse at the mid length of deep beams, is proposed. SFTS with replaceable shear links (SFTS-RSLs) dissipate seismic energy through shear deformation of the link. In order to evaluate this proposal, buildings were designed to compare the seismic performance of SFTS-RSLs and SFTSs. Several sub-structures were selected from the design buildings and finite element models (FEMs) were established to study their hysteretic behavior. Static pushover and dynamic analyses were undertaken in comparing seismic performance of the FEMs for each building. The results indicated that the SFTS-RSL and SFTS had similar initial lateral stiffness. Compared with SFTS, SFTS-RSL had lower yield strength and maximum strength, but higher ductility and energy dissipation capacity. During earthquakes, SFTS-RSL had lower interstory drift, maximum base shear force and story shear force compared with the SFTS. Placing a shear link at the beam mid-span did not increase shear lag effects for the structure. The SFTS-RSL concentrates plasticity on the shear link. Other structural components remain elastic during seismic loading. It is expected that the SFTS-RSL will be a reliable dual resistant system. It offers the benefit of being able to repair the structure by replacing damaged shear links after earthquakes.

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

강구조 부재와 골조의 거동 성상에 대한 해석수법의 개발에 관한 연구 (A Study on Development of Numerical Analysis Method Behavior for Properties of Steel Structure Member and Frame)

  • 박정민;김화중;이상재
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.115-123
    • /
    • 1996
  • 본 논문은 기하학적 비선형과 재료적 비선형을 고려하여 강구조 부재 및 골조의 비선형 해석을 위한 프로그램을 개발하고 강재의 응력도 변형도 관계를 정식화하였다. 본 프로그램의 효율성을 검증하기 위하여 단조 하중을 받는 H형강 보와 각형강관 기둥, 그리고 반복 수평력을 받는 브레이스 강재 라멘에 대한 수치해석을 행하였다. 본 그로그램에 의해 얻어진 결과는 대체적으로 기존의 실험 및 해석결과와 일치하였다.

  • PDF

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.

Numerical study of the seismic behavior of steel frame-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.305-325
    • /
    • 2020
  • Beams of steel frame-tube structures (SFTSs) typically have span-to-depth ratios of less than five. This makes a flexural beam unsuitable for such an application because the plastic hinges at the beam-ends cannot be adequately developed. This leads to lower ductility and energy dissipation capacities of SFTSs. To address this, SFTSs with bolted web-connected replaceable shear links (SFTS-BWSLs) are proposed. In this structural system, a web-connected replaceable shear link with a back-to-back double channel section is placed at the mid-length of the deep beam to act as a ductile fuse. This allows energy from earthquakes to be dissipated through link shear deformation. SFTS and SFTS-BWSL buildings were examined in this study. Several sub-structures were selected from each designed building and finite element models were established to study their respective hysteretic performance. The seismic behavior of each designed building was observed through static and dynamic analyses. The results indicate that the SFTS-BWSL and SFTS have similar initial lateral stiffness and shear leg properties. The SFTS-BWSL had lower strength, but higher ductility and energy dissipation capacities. Compared to the SFTS, the SFTS-BWSL had lower interstory drift, base shear force, and story shear force during earthquakes. This design approach could concentrate plasticity on the shear link while maintaining the residual interstory drift at less than 0.5%. The SFTS-BWSL is a reliable resistant system that can be repaired by replacing shear links damaged due to earthquakes.

부재배치에 따른 묶음튜브 구조의 전단지연현상 (The Shear Lag Phenomenon in Bundled Tube Structure According to the Arrangement of Structural Members)

  • 김영찬;김현
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.81-86
    • /
    • 2006
  • The purpose of this study is to examine the effect of column spacing and beam size on the lateral displacement and shear lag phenomenon in bundled tube system. According to the parametric study in which the spacing of columns, the size of columns and girders in bundled tube were selected as a parameter, it is the most efficient to increase the size of the interior columns with the largest reduction of lateral drift if the steel tonnage of a frame can be increased. It was noticed that the shear lag was affected more by the exterior stiffness factor and ratio than by the interior ones when column spacing was changed, and when the size of column was changed, the reverse phenomenon was happened. And The change of column spacing affected shear lag, lateral drift, and tonnage more than that of column size or girder size.

CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure)

  • 이장환;황병준;김제섭;정근호;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF