• 제목/요약/키워드: steel encased composite column

검색결과 54건 처리시간 0.017초

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동 (Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns)

  • 왕녕;이혜림;이명재
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.377-387
    • /
    • 2017
  • 이 연구에서는 강판 매입형 합성기둥의 Push-out Test를 통해 강재와 콘크리트의 부착면적에 따른 영향을 알아보았다. 이로써 부착면적이 넓을수록 부착응력은 작아진다는 경향이 조사되었다. 또한 소규모 매입형 합성기둥의 경우에는 설계기준에서 제시하는 공칭부착 응력값이 과소하게 적용되는 것을 확인하였다. 다음으로 H형강 매입형 합성기둥의 Push-out Test를 통해 전단연결재의 수와 간격에 따른 영향을 알아보았다. 이로써 전단연결재의 전단거동을 파악할 수 있었다.

강재매입형 합성기둥의 합성작용에 관한 실험 (Experiments on the Composite Action of Steel Encased Composite Column)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.485-488
    • /
    • 2004
  • Steel encased composite columns have been used for buildings and piers of bridges. Since column section for pier is relatively larger than that of building columns, economical steel ratio need to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bonding and friction. However, the behavior. of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Shear strength obtained from the tests showed considerably higher than the design value. Confinement, mechanical interlock and stud connectors increased the shear strength and these values can be used effectively to obtain composite action of SRC columns.

  • PDF

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Mechanical behaviour of partially encased composite columns confined by CFRP under axial compression

  • Liang, Jiongfeng;Zhang, Guangwu;Wang, Jianbao;Hu, Minghua
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.125-131
    • /
    • 2019
  • This paper presents the results of an experimental study to investigate the mechanical behavior of partially encased composite columns confined by CFRP under axial compression. The results show that the failure of the partially encased composite columns confined by CFRP occurred due to rupture of the CFRP followed by local buckling of the steel flanges. External wrapping of CFRP effectively delayed the local buckling of the steel flanges. The load carrying capacity of the column increased with the application of CFRP sheet. And the enhancement effect of the column was increased with the number of CFRP layer.

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes

  • Divyah, N.;Prakash, R.;Srividhya, S.;Sivakumar, A.
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.387-400
    • /
    • 2022
  • The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.

준정적 실험에 의한 SRC 합성교각의 내진성능 평가 (Seismic Performance Evaluation of SRC Column by Quasi-Static Test)

  • 한정훈;박창규;심창수;정영수
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.85-94
    • /
    • 2006
  • 지진지역의 교량교각에 대한 설계에서 요구연성도는 가장 중요한 요소이다. 철근콘크리트 교각의 내진성능 향상을 위해서 강관으로 교각을 감싸거나 후프철근과 같은 횡방향 철근을 이용하여 교각을 구속함으로써 교각의 연성도를 증가시키는 방안이 필요하다. 강재 매입형 교각을 이용하는 것은 RC 교각 내진성능을 향상시키는 유용한 방법중의 하나이다. 이 논문에서는 강재 매입형 합성교각의 내진성능을 평가하기 위하여 단일강재와 복수강재가 매입된 합성교각에 대하여 준정적 실험을 수행하였다. H형강이 매입된 실험체와 부분 충진된 원형강관이 매입된 단면으로 구성되어 총 8기의 실험체를 제작하였다. 실험변수는 심부구속 철근비, 매입 강재의 종류와 양으로서 이에 대한 변위연성도를 분석하였다. 실험결과 강재매입으로 인하여 교각의 변형능력이 증가하였으며 특히 원형강관이 매입된 교각의 변위연성도와 횡방향 강도가 가장 크게 나타났다.

HSA800 강재를 적용한 합성기둥의 축방향 내력 평가 (The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel)

  • 이명재;김철환;김희동
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.473-483
    • /
    • 2014
  • 건축구조기준에 따라 HSA800 강재의 합성기둥 적용시에는 실험 또는 해석적 방법을 통하여 적용의 타당성을 검증해야 한다. 이에 본 연구에서는 합성기둥으로 주로 사용되는 H형강 매입형, 각형강관 및 원형강관 충전형 합성기둥 단면을 대상으로 HSA800 강재를 적용한 단주압축실험을 실시하고, 이를 통하여 축방향 내력 및 건축구조기준의 합성기둥 설계압축강도 설계식 적용의 타당성을 평가하였다. 실험결과 매입형 합성기둥의 경우 HSA800 강재의 설계기준항복강도를 저감없이 사용하기 위해서는 건축구조기준의 설계압축강도 산정식의 조정이 필요한 것으로 나타났으며, 이를 위해 띠철근 간격 조정 및 콘크리트의 유효단면적 사용을 제안하였다. 충전형 합성기둥의 경우에는 각형, 원형충전강관 기둥 모두 별도의 강도 저감이나 설계압축강도 산정식의 조정 없이 사용이 가능할 것으로 판단된다.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.