DOI QR코드

DOI QR Code

Mechanical behaviour of partially encased composite columns confined by CFRP under axial compression

  • Liang, Jiongfeng (State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology) ;
  • Zhang, Guangwu (Faculty of Civil & Architecture Engineering, East China Institute of Technology) ;
  • Wang, Jianbao (Faculty of Civil & Architecture Engineering, East China Institute of Technology) ;
  • Hu, Minghua (Faculty of Civil & Architecture Engineering, East China Institute of Technology)
  • Received : 2018.02.22
  • Accepted : 2019.04.02
  • Published : 2019.04.25

Abstract

This paper presents the results of an experimental study to investigate the mechanical behavior of partially encased composite columns confined by CFRP under axial compression. The results show that the failure of the partially encased composite columns confined by CFRP occurred due to rupture of the CFRP followed by local buckling of the steel flanges. External wrapping of CFRP effectively delayed the local buckling of the steel flanges. The load carrying capacity of the column increased with the application of CFRP sheet. And the enhancement effect of the column was increased with the number of CFRP layer.

Keywords

Acknowledgement

Supported by : Chinese National Natural Science Foundation, Natural Science Foundation of Jiangxi Province, East China Institute of Technology

References

  1. Abbas, T., Tim, I., Antony, D., Mark, E. and Pedro, S. (2017), "Prediction of Capacity for Moment Redistribution in FRPStrengthened Continuous RC T-Beams", J. Compos. Constr., 21(1), 1-13
  2. Abdullah, J.A. and Salih, O.A. (2014), "Behavior and design of partially-encased composite beam-columns", Tikrit J. Eng. Sci., 20(3), 24-36
  3. Begum, M., Driver, R.G. and Elwi, A.E. (2015), "Parametric study on eccentrically-loaded partially encased composite columns under major axis bending", Steel Compos. Struct., Int. J., 19(5), 1299-1319 https://doi.org/10.12989/scs.2015.19.5.1299
  4. Chen, W.S., Pham, T.M., Sichembe, H., Chen, L. and Hao, H. (2018a), "Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet", Compos. Part B-Eng., 134, 114-126 https://doi.org/10.1016/j.compositesb.2017.09.053
  5. Chen, Y., Wang, K., He, K., Wei, J.G. and Wan, J. (2018b), "Compressive behavior of CFRP-confined post heated square CFST stub columns", Thin-Wall. Struct., 127, 434-445 https://doi.org/10.1016/j.tws.2018.02.012
  6. Dastfan, M. and Driver, R. (2018), "Test of a steel plate shear wall with partially encased composite columns and RBS frame connections", J. Struct. Eng., 144(2), 04017187 https://doi.org/10.1061/(ASCE)ST.1943-541X.0001954
  7. Fahmy, M.F.M. and Wu, Z. (2018), "Restoration of pre-damaged RC bridge columns using basalt FRP composites", Earthq. Struct., Int. J., 14(5), 379-388
  8. Fellouh, A., Benlakehal, N., Piloto, P., Ramos, A. and Mesquita, L. (2017), "Load carrying capacity of partially encased columns for different fire ratings", Fire Res., 1, 380-390
  9. GB50010-2010 (2010), National Standard of the People's Republic of China; Code for design of concrete structures, Chinese Architecture and Building Press, Beijing, China. (Only available in Chinese)
  10. Hanna, E.M. and Gaawan, S.M. (2016), "Experimental testing of partially encased composite beam columns", Int. J. Eng. Res. Appl., 6(1), 64-71
  11. Jamkhaneh, M.E. and Kafi, M.A. (2017), "Experimental and numerical investigation of octagonal partially encased composite columns subject to axial and torsion moment loading", Civil Eng. J., 3(10), 939-955. https://doi.org/10.28991/cej-030927
  12. Mehdi, D. and Robert, Q.D. (2016), "Large-scale test of a modular steel plate shear wall with partially encased composite columns", J. Struct. Eng., 142(2), 1-9
  13. Nie, X.F., Zhang, S.S., Teng, J.G. and Chen, G.M. (2018), "Experimental study on RC T-section beams with an FRPstrengthened web opening", Compos. Struct., 1, 273-285
  14. Pereira, M.F., De Nardin, S. and El Debs, A.L.H.C. (2016), "Structural behavior of partially encased composite columns under axial loads", Steel Compos. Struct., Int. J., 20(6), 1305-1322. https://doi.org/10.12989/scs.2016.20.6.1305
  15. Pereira, M.F., Beck, A.T. and El Debs, A.L.H.C. (2017), "Reliability of partially encased steel-concrete composite columns under eccentric loading", Rev.ibracon Estrut.mater, 10(2), 298-316. https://doi.org/10.1590/s1983-41952017000200003
  16. Piquer, A. and Hernandez-Figueirido, D. (2016), "Protected steel columns vs partially encased columns: Fire resistance and economic considerations", J. Constr. Steel Res., 124, 47-56. https://doi.org/10.1016/j.jcsr.2016.05.011
  17. Park, J.W. and Choi, S.M. (2013), "Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads", Steel Compos. Struct., Int. J., 14(5), 453-472. https://doi.org/10.12989/scs.2013.14.5.453
  18. Pham, T.M., Zhang, X., Elchalakani, M., Karrech, A., Hao, H. and Ryan, A. (2018), "Dynamic response of rubberized concrete columns with and without FRP confinement subjected to lateral impact", Constr. Build. Mater., 186, 207-218 https://doi.org/10.1016/j.conbuildmat.2018.07.146
  19. Rocha, F.M., Rodrigues, J.P.C. and Neto, J.M. (2018), "Fire behavior of steel and partially encased composite columns embedded on walls", J. Construct. Steel Res., 149, 105-118. https://doi.org/10.1016/j.jcsr.2018.07.014
  20. Shakir, A.S., Guan, Z.W. and Jones, S.W. (2016), "Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening", Eng.Struct., 116, 148-162 https://doi.org/10.1016/j.engstruct.2016.02.047
  21. Song, Y.C., Wang, R.P. and Li, J. (2016), "Local and post-local buckling behavior of welded steel shapes in partially encased composite columns", Thin-Wall. Struct., 108, 93-108 https://doi.org/10.1016/j.tws.2016.08.003
  22. Wang, J., Liu, W.Q., Zhou, D., Zhu, L. and Fang, H. (2014), "Mechanical behaviour of concrete filled double skin steel tubular stub COLUMNS confined by FRP under axial compression", Steel Compos. Struct., Int. J., 17(4), 431-452. https://doi.org/10.12989/scs.2014.17.4.431
  23. Wang, Q.L., Qu, S.E., Shao, Y.B. and Feng, L.M. (2016), "Static behavior of axially compressed circular concrete filled CFRPsteel tubular (C-CF-CFRP-ST) columns with moderate slenderness ratio", Adv. Steel Constr., 12(3), 263-295.
  24. Wang, Q.L., Zhao, Z., Shao, Y.B. and Li, Q.L. (2017), "Static behavior of axially compressed square concrete filled CFRPsteel tubular (S-CF-CFRP-ST) columns with moderate slenderness", Thin-Wall. Struct., 110, 106-122 https://doi.org/10.1016/j.tws.2016.10.019
  25. Wang, J.F., Shen, Q.H., Wang, F.Q. and Wang, W. (2018), "Experimental and analytical studies on CFRP strengthened circular thin-walled CFST stub columns under eccentric compression", Thin-Wall. Struct., 127, 102-119 https://doi.org/10.1016/j.tws.2018.01.039
  26. Yoo, S.W., Choi, Y.C. and Choi, W. (2017), "Compression behavior of confined columns with high-volume fly ash concrete", Adv. Mater. Sci. Eng., 1-11.