• 제목/요약/키워드: steel columns

검색결과 1,380건 처리시간 0.021초

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

고강도 RC 기둥의 전단능력 증진을 위한 강섬유 보강 (Steel Fiber Reinforcement for Shear Capacity Enhancement of High Strength RC Columns)

  • 장극관;이현호;문상덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.469-474
    • /
    • 2002
  • This study was to define the strengthening effect of steel fibers in high strength RC columns. For this, ten specimens of columns were tested under cyclic lateral load and constant axial load. The testing parameters are steel fiber volume fraction of concrete and shear reinforcement ratio of hoop bars. Finally, the optimal content of steel fibers was evaluated as 1.0 - 1.5 % volume fraction of concrete.

  • PDF

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

고강도콘크리트 충전 각형강관기둥의 내력평가에 관한 연구 (A Study on the Strength Evaluation of Rectangular Steel Tubular Columns Infilled with High Strength Concrete)

  • 심종석;한덕전
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.95-102
    • /
    • 2011
  • 두께가 얇은 강관을 사용한 CFT기둥은 강관의 국부좌굴에 대한 구속효과로 내력상승을 기대할 수 있으므로 폭두께비가 작은 강관 CFT기둥에 비해 경제성을 확보할 수 있다. 본 논문의 목적은 각형 CFT기둥에 대한 기존 설계식의 타당성을 입증하고, 내력 증대에 따른 강관 폭두께비의 사용성 한계를 확인하고자 하였다. 실험의 주요변수로는 강관의 폭두께비, 콘크리트 각 주의 높이 및 콘크리트 충전 유무로 하였다. 실험결과, 고강도 콘크리트를 충전한 박판의 각형강관기둥에서 충전콘크리트의 압축내력에 대한 강관의 구속효과가 크게 나타났으며, 비선형 해석에 따르면, 실험결과에 의한 내력은 전체 CFT단주 실험체에서 해석값보다 다소 크게 나타남을 알 수 있었다.

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Shape effect on axially loaded CFDST columns

  • R, Manigandan;Kumar, Manoj
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.759-772
    • /
    • 2022
  • Concrete-filled double skinned steel tubular (CFDST) columns have been used to construct modern structures such as tall buildings and bridges as well as infrastructures as they provide better, lesser weight, and greater stiffness in structural performance than conventional reinforced concrete or steel members. Different shapes of CFDST columns may be needed to satisfy the architectural and aesthetic criteria. In the study, three-dimensional FE simulations of circular and elliptical CFDST columns under axial compression were developed and verified through the experimental test data from the perspectives of full load-displacement histories, ultimate axial strengths, and failure modes. The verified FE models were used to investigate and compare the structural performance of CFDST columns with circular and elliptical cross-section shapes by evaluating the overall load-deformation curves, interaction stress-deformation responses, and composite actions of the column. At last, the accuracy of available design models in predicting the ultimate axial strengths of CFST columns were investigated. Research results showed that circular and elliptical CFDST column behaviors were generally similar. The overall structural performance of circular CFDST columns was relatively improved compared to the elliptical CFDST column.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.