• Title/Summary/Keyword: steel beam-to-column connections

Search Result 391, Processing Time 0.02 seconds

Computational and experimental analysis of beam to column joints reinforced with CFRP plates

  • Luo, Zhenyan;Sinaei, Hamid;Ibrahim, Zainah;Shariati, Mahdi;Jumaat, Zamin;Wakil, Karzan;Pham, Binh Thai;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.271-280
    • /
    • 2019
  • In this paper, numerical and experimental assessments have been conducted in order to investigate the capability of using CFRP for the seismic capacity improvement and relocation of plastic hinge in reinforced concrete connections. Two scaled down exterior reinforced concrete beam to column connections have been used. These two connections from a strengthened moment frame have been tested under uniformly distributed load before and after optimization. The results of experimental tests have been used to verify the accuracy of numerical modeling using computational ABAQUS software. Application of FRP plate on the web of the beam in connections to improve its capacity is of interest in this paper. Several parametric studies were carried out for CFRP reinforced samples, with different lengths and thicknesses in order to relocate the plastic hinge away from the face of the column.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.

Effects of Steel Fiber Reinforcement and the Number of Hooked Bars at R/C Exterior Joints

  • Choi, Ki-Bong
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.181-189
    • /
    • 1999
  • An experimental study was performed on the Pull-out behavior of 90-deg standard hooks from the exterior beam-column connections. the effects of the number of hooked bars and fiber reinforcement of the joint area were investigated with the following conclusions : (1) Under the pull-out action of hooked bars. the damage and cracking of joint area the number of hooks pulling out from a joint increases; (2) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by the pull-out of hooked bars; (3) The pull-out strength and post-peak ductility of hooked bars are adversely influenced by the increase in number of hooks pulling out from an exterior joint. Current hooked bar anchorage design guidelines may be improved by considering the effect of the number of hooked bars on anchorage conditions at the exterior joints; and (4) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers . The application of steel fibers to the exterior joints is an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in the beam-column connections.

  • PDF

Cyclic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대 실험)

  • 이철호;전상우;김진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.306-316
    • /
    • 2002
  • This paper summarizes the results of full-scale cyclic seismic testing on four RBS (reduced beam section) steel moment connections. Key test variables were web bolting vs. welding and strong vs. medium PZ (panel zone) strength. The specimen with medium PZ strength was specially designed to mobilize energy dissipation from both the PZ and RBS region in a balanced way; the aim was to reduce the requirement of expensive doubler plates. Both strong and medium PZ specimens with web-welding were able to provide sufficient connection rotation capacity required of special moment frames, whereas specimens with web-bolting showed inferior performance due to the premature brittle fracture of the beam flange across the weld access hole. In contrast to the case of web-welded specimens, the web-bolted specimens could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. If a quality welding for the beam-to-column joint is made as in this study, the fracture-prone area tends to move into the beam flange base metal within the weld access hole. Analytical study was also conducted to understand the observed base metal fracture from the engineering mechanics point of view.

  • PDF

The Shear Capacity of CFT Column to H-Beam End plate Connections with Penetrated High-Strength Bolts (관통형 고력볼트를 사용한 엔드플레이트형식 CFT 기둥-H형강 보 접합부의 전단성능)

  • Kim, Young Ju;Kim, Jae Keon;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.351-362
    • /
    • 2000
  • This paper is to study on the behavior of CFT column to H-beam end plate connections with penetrated high-strength bolts under cyclic load. The main parameters are as follows: 1) the thickness of end plate: 16mm, 22mm and 25mm, 2) the thickness of column : 9mm and 12mm. Comparison and analysis on the test results are performed in accordance with parameters. This study investigates energy absorption capacity of beam-column connections and analyzes the shear strength of joint panel. The shear strength of joint panel is estimated by superimposing the strength of the steel which is based on the von Mises yield criterion and that of the concrete which is used the Strut model to consider the effect of filled concrete.

  • PDF

An Analytical Study on Semi-Rigid Connections of 6-Story Unbraced Steel Structures (6층 비가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kim, Jin Hyoung;Kang, Suk Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.425-433
    • /
    • 1999
  • Structural analysis and design of steel frames is usually conducted under the assumption that beam-to-column connections are either fixed or pinned. In reality, each connection possesses a certain rotational stiffness. In this study, structural analysis program is developed, which takes into account the nonlinear behavior of framed structures including flexibility of semi-rigid connections and member geometric nonlinearity. Effective semi-rigid connections for a 6-story unbraced steel frame are suggested and the effect of flexible connections on the behavior of the structure are studied.

  • PDF

An Experimental Study on the Structural Behavior of Double-Angle Shear Connections in Steel Structures (강구조 복앵글 전단 접합부의 구조적 거동에 관한 실험적 연구)

  • Lee, Do-Hyung;Kim, Seok-Jung
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.305-312
    • /
    • 1997
  • Shear connections in steel structures should satisfy dual criteria of shear strength and rotational flexibility and ductility. The connection should be strong enough to transfer the shear reaction of the beam, and should have sufficient rotational flexibility and ductility to rotate easily and supply the end rotation demand of the beam. This paper is concerned with the behavior of double-angle shear connections where the parameters are numbers of high strength bolts, bolt pitch, the length of angle leg, and connection method. An experimental investigation of shear connection was conducted by testing 12 beam-to-column joint specimens. Based on experimental and analytical study, the failure modes are developed and proposed design formulas.

  • PDF

Nonlinear Analysis of the Connections with Reinforced Concrete Column and Steel Beam using Finite Element Method (유한요소법을 이용한 혼합구조 접합부의 비선형 해석)

  • Hong, Seong-Hoon;Ryu, Cheon;Lee, Li-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.363-370
    • /
    • 1999
  • This study presented an modeling method for the connections in mixed structure with reinforced concrete columns and steel beam using finite element method. The contacting surfaces between concrete and steel are modeled using master-slave contact algorithm and the incompatible mode elements were used in the steel tube subjected to bending. The characteristics of mixed structure was that diaphragm was used for transferring force from beam to column. The three dimensional nonlinear analysis was performed and the analytical results compared with experimental results in order to prove modeling method.

  • PDF

Structural Characteristic of Beam-to-Column Connections in Rectangular CFT Structures Considering Concrete Filling (충전성을 개선한 각형CFT 기둥-보 접합부의 구조 특성)

  • Park, Je Young;Lee, Myung Jea
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but due to the larger size than the through diaphragm, it has poorer constructability and cooperation with building equipment. The building structure has a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragmwas placed at the lower connection to avoid obstruction of the building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.