• Title/Summary/Keyword: steaming heat treatment

Search Result 45, Processing Time 0.021 seconds

Dimensional Stability of Plastic Processing Wood Material - Compression Wood and Bentwood -

  • Hwang, Kweon-Hwan;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.143-146
    • /
    • 2007
  • This study was carried out to assess the dimensional stability of wood material treated by plastic processing for bentwood and compression wood. The evaluation method was different between two wood materials, but the treatments for them were very similar to each other. One of the main methods is heat treatment with sufficient water vapor. In bentwood, the used species were painted maple (Acer mono), bitter wood (Picrasma quassioides) and birch (Betula schmidtii). Steaming was the worst treatment method for dimensional stabilization of bentwood. The best results could be attained with PEG treatment for dimensional stabilization of bentwood. Dimensional stability of bitter wood was found to be conspicuous. However the steaming treatment at lower temperatures, i.e., about $130^{\circ}C$ was not suitable for dimensional stability of bentwood. In compression wood, the used specimen was Italian poplar wood (Populus euramericana). Two heat compressive pressing conditions, an open-press system and an air-tighten closed-press system, were used. The recovery rate was measured after boiling and/or absorbing in water to estimate the dimensional stability of heat compressed wood. The best dimensional stability of compressed wood in the air-tighten closed-press system was found to be better at $200^{\circ}C$ than $180^{\circ}C$. The best compression rate for dimensional stability was 73 percent.

  • PDF

Improvement of Physical and Drying Properties of Large Diameter and Long Axis Moso Bamboo (Phyllostachys pubescens) Poles Using Heat Treatment

  • Kyoung-Jung KIM;Young-Jin KIM;Se-Yeong PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.447-447
    • /
    • 2023
  • This study aimed to convert underutilized moso bamboo into high-value added products such as fences, interior materials, lighting fixtures, and accessories. Green moso bamboo poles with a diameter of approximately 10 cm and a length of approximately 3.7 m were heat treated at 140℃ using a large-scale kiln. The processing time was meticulously adjusted through various stages, including pretreatment (6-8 hours at 60℃), cooking (8-10 hours at 100℃), steaming (26-30 hours at 120℃), heating (4-6 hours at 140℃), and finally, cooling (below 80℃). A meticulously designed heat treatment process has enabled efficient mass production of moso bamboo poles with improved qualities, including minimal splitting, moisture levels below 3%, and a specific gravity of 1.05. The focus of this study was to present the physical and drying properties, such as color, dimensional change, specific gravity, moisture content, and splitting, observed during the heat treatment process.

Conversion of Brown Materials, Crude Lipids, Crude Proteins and Aromatic Compounds of Changed Ginseng by 9 Repetitive Steaming and Drying Process (인삼의 구증구폭(九蒸九曝)에 의한 갈변물질, 조지방, 조단백 및 향기성분의 변화)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Lee, Bum-Soo;In, Jun-Gyo;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.333-339
    • /
    • 2008
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. Kujeungkupo method which means 9 repetitive steaming and drying process was used for the processes of green tea, Polygonatum odoratum, and Rehmanniae radix preparata. In this study, ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of brown materials, crude lipids, crude proteins and aromatic compounds. Brown materials, as an antioxidant, in red ginseng were produced through non-enzymatic reaction by heat. Repetitive steaming and drying treatments on ginseng root contiunously increased the content of brown materials and the chromaticity. Crude lipids were degraded by heat and converted into volatile aromatic ingredients. Crude lipids were degraded and decreased by 0.52% after the 5th and 7th. Crude proteins were also decomposed and converted to amino acid. Crude proteins after the 9th treatment were decreased by more than 85% as increased times of treatments. A bicyclogermacrene as aromatic material was decreased as increased treatment times, while but a aromatic caramel was increased.

Conversion of Acidic Polysaccharide and Phenolic Compound of Changed Ginseng by 9 Repetitive Steaming and Drying Process, and Its Effects of Antioxidation (인삼의 구증구포에 의한 산성다당체, 페놀성화합물의 변환 및 항산화능)

  • Kim, Do-Wan;Lee, Yun-Jin;Min, Jin-Woo;Kim, Yu-Jin;Rho, Young-Deok;Yang, Deok-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.121-126
    • /
    • 2009
  • Korean ginseng (Panax ginseng C. A. Meyer) has been used as an important medicinal plant in the Orient for a long time. It has been claimed that ginseng has many beneficial bioactive effects on human health, such as antitumor, antistress, antiaging and enhancing immune functions. Red ginseng possibly have new ingredients converted during steaming and dry process from fresh ginseng. In this study, pharmacological efficacy and ingredient conversion of ginseng by 9 repetitive steaming and drying process were investigated measuring conversion efficiency of acidic-polysaccharide, phenolic compounds and inhibition of peroxide lipides. It was found that acidic-polysaccarides were increased by heat treatment. In addition, maltol of phenolic compounds, strong antioxidant, produced during the process of red ginseng by Maillard reaction. Acidic-polysaccarides and maltol were increased after the 1st and 3rd steaming and drying treatments, but they were decreased gradually after 5th, 7th, and 9th treatments. Antioxidant activity was increased as increasing treatment times of steaming and drying without significance. Effect of red ginseng extract on inhibition of peroxide was increased gradually until after the 7th treatment, but remarkably decreased after the 9th treatment.

Effects of Heat Treatments on Physicochemical Properties and In Vitro Biological Activities of Quinoa (Chenopodium quinoa Willd.) (퀴노아의 열처리 가공에 따른 이화학적 특성 및 In Vitro 생리활성)

  • Goh, Hye-Kyung;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.688-694
    • /
    • 2017
  • The effects of heat treatments on the physicochemical properties and in vitro biological activities of quinoa (Chenopodium quinoa Willd.) were investigated. Quinoa grains were subjected to two different heat treatment methods: boiling and steaming plus roasting (steaming/roasting). Compared with raw quinoa, boiled quinoa samples had slightly lower crude protein, crude fat, crude ash, and starch contents. However, steaming/roasting treatment did not cause significant differences in proximate composition. Heat treatments reduced total phenolic and flavonoid contents in quinoa extracts, and higher reduction was detected upon boiling treatment. Heat treatments also reduced lightness and increased yellowness of quinoa samples. Heat treatments increased water absorption index but decreased water solubility index. In vitro starch hydrolysis increased substantially after both heat treatments, and slightly higher values were observed in the boiled quinoa samples. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activity and nitrite scavenging activity were reduced by heat treatments, and the boiled quinoa sample showed the lowest activity likely due to loss of activities in cooking water.

Treatments to Prevent Kiln-dried Larch Boards from Resin Exudation (낙엽송 열기건조재의 수지삼출예방을 위한 처리기술)

  • Kang, Ho-Yang;Kim, Su-Won
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • This study was carried out for deresinning the larch boards dried in a conventional kiln. Prior to heat treatment they were steamed in an autoclave for 5 hours or frozen for 24 hours at a temperature of $-35^{\circ}C$. The velocities of ultrasound transmitted through the specimens were measured to examine the correlation with their resin contents. It was found that the specimens heated at $100^{\circ}C$ for 5 hours contained less resin that those heated at $200^{\circ}C$ for an hour. Both treatments of steaming and freezing were effective for deresinning and the former was better than the latter. The ultrasonic velocities measured before the heat treatment showed a negative correlation to the resin contents of the specimens, but those measured after the heat treatment a positive correlation. This difference may be attributed to the viscosity of resin.

  • PDF

Physicochemical Characteristics of a 4-Year-Old Ginseng Based on Steaming Temperatures and Times (증숙 온도와 시간에 따른 4년근 인삼의 이화학적 특성)

  • Yu, Jin;Jang, In Bae;Moon, Ji Won;Jang, In Bok;Lee, Sung Woo;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.86-95
    • /
    • 2019
  • Background: Depending on the processing method, the raw materials constituents change in various ways. In particular, a heat treatment process, such as steaming, changes the color and aroma of a raw material to increase its palatability and number of physiologically active ingredients. Methods and Results: In the present study, the effects of the steaming temperature and time on the yield, color, proximal composition, and total polyphenol and ginsenoside content of a 4-year-old ginseng root were analyzed. The yield tended to decrease with the increase of steaming time at each temperature and the total ginsenoside content increased with increasing of steaming temperature except at $80^{\circ}C$. Conclusions: These results suggest that steaming at $100^{\circ}C$ for 6 - 9 hours or at $110^{\circ}C$ for 3 - 6 hours is suitable for increasing total polyphenol and ginsenoside content with less yield reduction in a 4-year-old ginseng root.

Appropriate Soil Heat Treatment Promotes Growth and Disease Suppression of Panax notoginseng by Interfering with the Bacterial Community

  • Li, Ying-Bin;Zhang, Zhi-Ping;Yuan, Ye;Huang, Hui-Chuan;Mei, Xin-Yue;Du, Fen;Yang, Min;Liu, Yi-Xiang;Zhu, Shu-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In our greenhouse experiment, soil heat treatment groups (50, 80, and 121℃) significantly promoted growth and disease suppression of Panax notoginseng in consecutively cultivated soil (CCS) samples (p < 0.01), and 80℃ worked better than 50℃ and 121℃ (p < 0.01). Furthermore, we found that heat treatment at 80℃ changes the microbial diversity in CCS, and the inhibition ratios of culturable microorganisms, such as fungi and actinomycetes, were nearly 100%. However, the heat-tolerant bacterial community was preserved. The 16S rRNA gene and internal transcribed spacer (ITS) sequencing analyses indicated that the soil heat treatment had a greater effect on the Chao1 index and Shannon's diversity index of bacteria than fungi, and the relative abundances of Firmicutes and Proteobacteria were significantly higher than without heating (80 and 121℃, p < 0.05). Soil probiotic bacteria, such as Bacillus (67%), Sporosarcina (9%), Paenibacillus (6%), Paenisporosarcina (6%), and Cohnella (4%), remained in the soil after the 80℃ and 121℃ heat treatments. Although steam increased the relative abundances of most of the heat-tolerant microbes before sowing, richness and diversity gradually recovered to the level of CCS, regardless of fungi or bacteria, after replanting. Thus, we added heat-tolerant microbes (such as Bacillus) after steaming, which reduced the relative abundance of pathogens, recruited antagonistic bacteria, and provided a long-term protective effect compared to the steaming and Bacillus alone (p < 0.05). Taken together, the current study provides novel insight into sustainable agriculture in a consecutively cultivated system.

Research on Continuous After-Treatment Process and System for DTP(Digital Textile Printing) (DTP(Digital Textile Printing)용 후처리 및 연속공정 시스템에 관한 연구)

  • Park, Soon-Young;Jeon, Dong-Won;Park, Yoon-Cheol;Lee, Beom-Soo;Cho, Hang-Sung
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.43-54
    • /
    • 2011
  • Digital Textile Printing(DTP) is appropriate for quick response system(QRS) and is closely connected with high value added fashion industry. Fashion products of high price are mainly silk and cotton. For high quality DTP products, it is important to optimize the parameters of media, pre and after-treatment, ink, printer, etc. DTP for these two fiber materials is also accompanied certainly with steaming as after-treatment process for coloration. Role of steam is like water in exhaustion dyeing. Steam can diffuse dye or ink in printing paste to fiber. Quality of DTP products depend on after-treatment processes such as steaming, washing, drying. Current production amount of DTP is smaller than one of conventional textile printing. However conventional after-treatment system has been using so far. This is mismatched with DTP in terms of process efficiency, spot work of small lot, quality control. In this study, continuous after-treatment system has been suitably designed for DTP that washing and drying are available after steaming. So, It is possible to improve efficiency of DTP process. Especially, the effects of after-treatment process, such as temperature of heat drum, steaming time on printability, color difference, color fastness were examined. Two types of samples(cotton knit and silk fabrics) were used. The results were obtained as follows : First, there is no a wide difference between the K/S values of cotton and silk treated with continuous after-treatment system and those of sample treated with conventional printing after-treatment method. So it is more effective to use the continuous after-treatment system than conventional printing after-treatment system in case of the daily throughput of 1,000 yards below. Second, after continuous after-treatment for DTP, K/S values were increased and lightness($L^*$) values were decreased. ${\Delta}E$ values were below 2.3. Third, DTP samples treated with continuous after-treatment system were tested for fastness(washing, light, rubbing). Grades of fastness(washing, light, rubbing) were above 3 grade.

Effect of Soaking and Heat Treatment Conditions on Physicochemical and Organoleptic Quality of Lotus Root (침지처리 및 열처리 조건이 연근의 관능적 특성 및 이화학적 특성에 미치는 영향)

  • Lee, Sung-Chul;Kim, So-Young;Choi, Sun-Ju;Lee, In-Suk;Jung, Moon-Yung;Yang, Sam-Man;Chae, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • To reduce the astringent taste of lotus root, the effects of various treatment methods such as drying, soaking, steaming and roasting on the physicochemical properties and sensory characteristics were investigated. The following process conditions were selected: 1) drying (D), 2) soaking followed by drying ($SK{\rightarrow}D$), 3) steaming followed by drying ($ST{\rightarrow}D$), 4) drying followed by roasting ($D{\rightarrow}R$), 5) soaking and then drying followed by roasting ($SK{\rightarrow}D{\rightarrow}R$), 6) steaming and then drying followed by roasting ($ST{\rightarrow}D{\rightarrow$}. The tannin content of the lotus root was lowest when it was treated by steaming followed by drying ($ST{\rightarrow}D$). The astringent taste of lotus root was reduced by steaming, and the roasted taste was improved by roasting in terms of sensory and flavor characteristics. Consequently, lotus root treated by steaming and then drying followed by roasting ($ST{\rightarrow}D{\rightarrow}R$) showed the highest preference with respect to astringent and roasted taste.