• 제목/요약/키워드: steam-jet

검색결과 74건 처리시간 0.024초

과산화수소의 촉매 분해를 활용한 수중 제트 추진 시스템 개념 설계 (Conceptual Design of Underwater Jet Propulsion System using Catalytic Decomposition of Hydrogen Peroxide)

  • 백승관;강홍재;안병욱;윤용태;이재호;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.120-127
    • /
    • 2017
  • 로켓 등급의 고농도 과산화수소는 촉매 분해를 통해 높은 온도의 산소와 수증기를 발생하며, 이와 같은 성질을 이용하여 우주 추진 기술로 사용된 바 있다. 본 연구에서는 과산화수소의 촉매 분해를 이용한 수중 추진 시스템 관련 문헌 조사 및 개념 설계를 진행했다. 과산화수소 분해 가스를 분사하는 분사기 설계의 경우 로켓 노즐 설계 방식과 유사하게 진행했으며, 두 종류의 형태로 엔진 설계를 진행했다. 환형의 형태의 가스 분사기를 갖는 엔진을 제작하여 수중 환경에서 작동 시험을 수행했으며, 엔진 노즐 출구의 면적에 따른 성능 변화를 관찰했다. 향후 중앙에서 가스를 분사하는 방식의 엔진을 제작하여 성능 평가를 수행할 예정이다.

  • PDF

환경차폐코팅용 이터븀 실리케이트의 고온 수증기부식 거동 (Corrosion Behavior of Ytterbium Silicates in Water Vapor Atmosphere at High Temperature for Environmental Barrier Coating Applications)

  • 김민지;최재형;김성원
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.443-450
    • /
    • 2023
  • SiC/SiCf CMC is vulnerable to water vapor corrosion at a high temperature of 1500℃. So, EBC (Environmental Barrier Coating) materials are required to protect Si-based CMCs. Ytterbium silicates are reported to have coefficient of thermal expansion (CTE) similar to that of the base material, such as SiC/SiCf CMC. When the EBC are materials exposed to high temperature environment, the interface between ytterbium silicates and SiC/SiCf CMC is not separated, and the coating purpose can be safely achieved. For the perspective of EBC applications, thermally grown oxide (TGO) layer with different CTE is formed by the reaction with water vapor in EBC, which leads to a decrease in life time. In this study, we prepare two types of ytterbium silicates to observe the corrosion behavior during the expose to high temperature and water vapor. In order to observe this behavior, the steam-jet furnace is prepared. In addition, phase formation of these ytterbium silicates is analyzed with microstructures by the before/after steam-jet evaluation at 1500℃ for 100 h.

아음속/초음속 증기 이젝터에 관한 실험적 연구 (An Experimental Study of the Subsonic/Supersonic Steam Ejectors)

  • 최보규;김희동;이준희;김덕줄
    • 한국추진공학회지
    • /
    • 제4권4호
    • /
    • pp.1-8
    • /
    • 2000
  • 본 연구에서는 아음속/초음속 이젝터 시스템의 효과적인 설계를 목적으로, 증기 보일러로부터 발생하는 파열증기를 1차 구동유체로 하는 축대칭 아음속/초음속 이젝터 유동을 실험하였다. 과열증기는 여러형태의 아음속/초음속 노즐에 의하여 이젝터 혼합부로 방출되도록 설계되었으며, 2차정체실 내부에 있는 대기 공기는 증기제트에 의하여 혼합부로 유입된다. 실험에서는 2차정체실의 진공성능을 조사하기 위하여 넓은 범위의 이젝터 자동압력비에 대하여 적용하였다. 본 연구의 결과로부터 이젝터목에서 혼한유동의 정압은 1차 노즐의 형태에 관계없이 이젝터 작동압력비의 함수만에 의하여 결정된다는 것을 알았다.

  • PDF

Evaluation of jet breakup length with a CFD code under steam generation condition in a pre-flooded cavity

  • Jeong-Hyeon Eom;Gi-Young Tak;In-Sik Ra;Huu Tiep Nguyen;Hae-Yong Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2498-2503
    • /
    • 2023
  • When the reactor vessel is penetrated in a severe accident of light water reactor, the molten fuel-coolant interaction including the jet breakup occurs and the jet breakup length becomes one of the important parameters. Most numerical studies on jet breakup process have been carried out using dedicated computer codes. Some researchers are trying to apply commercial CFD codes to their investigations on comprehensive jet breakup process. However, the complexity of the phenomena limits the CFD application only to hydrodynamic aspects. In the present study, numerical analysis of jet breakup under vapor generation is pursued using the STAR-CCM + code. The obtained CFD prediction of the MATE09 experiment shows jet breakup progression patterns consistent to the images taken in the experiment. Further, the predicted positions of leading head, which determine the jet breakup length, are in good agreement with the MATE 09 data. The investigation of hydrodynamic effects on the jet breakup with higher jet velocity results in a stronger shear force and earlier jet breakup process even though there exists the vapor pocket around the corium jet. In future studies, the effect of vapor intensity on the jet breakup length would be investigated further by changing other parameters.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

공기구동 기체이젝터의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Air Driven Gas Ejector)

  • 홍영표;윤두호;김용모;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.51-59
    • /
    • 1994
  • The gas jet pumps serve to preduce a vacuum or can be used as gas jet compressors. These are operated on the same principle as a steam jet vacuum pump : in the driving nozzle the pressure energy of the motive medium is converted into the kinetic energy. In the diffuser the driving jet mixes with the suction medium and the kinetic energy is reconverted into the pressure enegy. The application fields of gas jet ejectors are the evacuation of siphoning installations, the elevation of liquids, the production of vacuum filters, the vacuum supporting airlift system, the evacuation of the suction line of centrifugal pumps and the ventilation of the dangerous gases to the atmosphere. The performance of gas jet ejector is influenced strongly to velocity coefficient of motive nozzle, the distance between the motive outlet to the diffuser inlet and the dimensions of diffuser. This study is performed for the computer aided design of gas jet ejectors in future. Through the present experiments, it is known that the velocity coefficient of the motive air nozzle ranges from 0.91 to 0.95 and the maximum efficiency of gas jet ejector is 24.6%.

  • PDF

증기 이젝터의 자동설계를 위한 전산프로그램의 개발 (A study on the Computer-Aided Design of steam ejector)

  • 김경근;김용모;강신돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.53-60
    • /
    • 1987
  • Steam ejector is a equipment which compresses the gases to desired discharge pressure. It is widely used for the evacuation systems because of its high working confidence. And recently it is used as the thermo-compressors in the various energy saving systems. Steam ejector is constructed of three basic parts; a suction chamber, a motive nozzle and a diffuser. The high velocity stream jet of steam emitted by the motive nozzle creats suction chamber, which draws the low pressure gases. The diffuser converts the kinetic energy of high velocity flow to pressure energy. It is not easy to determine the dimensions of a steam ejector met to the desired design condition, because that the expected suction rates must be obtained by reapeating the complicate calculation. And also such a calculation is concomitant with geometrical analysis for suction part and diffuser based on the stability of steam flow. Therefore, it is considered that the Computer-Aided Design (CAD) of steam ejector is a powerful design method. In this paper, computer program for steam ejector design is developed based on the theoretical research and the previous experimental results. And the determinating method of diffuser inlet angle and the velocity development profile of suction gas along to the diffuser are suggested. The validity of the development profile of suction gas along to the diffuser are suggested. The validity of the developed computer results with other's for the practical design calculation of a manufactured steam ejector.

  • PDF

Stratified steam explosion energetics

  • Jo, HangJin;Wang, Jun;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.95-103
    • /
    • 2019
  • Vapor explosions can be classified in terms of modes of contact between the hot molten fuel and the coolant, since different contact modes may affect fuel-coolant mixing and subsequent vapor explosion energetics. It is generally accepted that most vapor explosion phenomena fall into three different modes of contact; fuel pouring into coolant, coolant injection into fuel and stratified fuel-coolant layers. In this study, we review previous stratified steam explosion experiments as well as recent experiments performed at the KTH in Sweden. While experiments with prototypic reactor materials are minimal, we do note that generally the energetics is limited for the stratified mode of contact. When the fuel mass involved in a steam explosion in a stratified geometry is compared to a pool geometry based on geometrical aspects, one can conclude that there is a very limited set of conditions (when melt jet diameter is small) under which a steam explosion is more energetic in a stratified geometry. However, under these limited conditions the absolute energetic explosion output would still be small because the total fuel mass involved would be limited.

케비테이션 제트 유동을 이용한 발전 시스템 (A Power-Generation System using Cavitation jet flow)

  • 나정수;이강주;이봉렬;주남식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF