• Title/Summary/Keyword: steam-activated carbons

Search Result 23, Processing Time 0.023 seconds

Sorption of $Pb^{2+}$ Ions on to Activated Carbons Prepared from Olive Stones

  • Attia, Amina. A.;Shouman, Mona. A.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • The carbon sample "O", phosphoric acid-activated carbon "OP", zinc chloride-activated carbon "OZ", and two steam activated carbons "OS" and "OS2" with different burn-off of 25% and 58% respectively, were prepared from olive stones. The textural properties were determined from the results of nitrogen adsorption at 77 K and by analyzing these results through the application of different adsorption models. The chemistry of the carbon surfaces was determined from the base neutralization capacities, acid neutralization capacity and surface pH. The sorption of $Pb^{2+}$ ions on to the carbons prepared was followed under dynamic and equilibrium conditions. The differences between the values of the textural parameters were attributed to the inapplicability of some adsorption models and to the heterogeneity of the microporous carbons. The sorption of $Pb^{2+}$ ions is favored on carbon and activated carbons. However, chemically activated carbons are more effective compared with steam-activated ones. The sorption of $Pb^{2+}$ ions were related to the chemistry of the surface rather than to the textural properties.

  • PDF

Preparation of the activated carbon for the canister form cokes

  • In-Ki, Kim;Han-Jun, Oh;Jang, Jin-Seok;Youm, Hee-Nam;Young-Shin, Ko
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.67-71
    • /
    • 1997
  • Activated carbons are the microporous carbonaceous adsorbents which are prepared from carbon-containing source materials such as wood, coal, lignite, peteroleum and sometimes synthetic high polymers. [1-2] Activated carbons shows an ability to adsorbe hydrocarbons of the gas phase. Activated carbons are used in the purification of many kinds of gas phases like hexane, benzene, toluene, gasoline, phenol etc.[3] In this study, cokes from bitminous coal were activated for the purpose of preparing the activated carbons by steam activation. The effect of the activation temperature, time, steam concentration and flow rate on the n-butane adsorption, burn off, surface area and average pore size of the activated carbons, were investigated. The adsorption characteristics of the activated carbons for gasoline are indirectly estimated by n-butane adsorption.

  • PDF

Characteristics of pore structure of steam activated carbon with carbonization temperature (수증기 활성화법으로 제조된 활성탄의 탄화온도에 따른 세공구조 고찰)

  • 이송우;나영수;김도한;최동훈;류동춘;송승구
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.345-349
    • /
    • 2000
  • Activated carbons were prepared from Korean coal by steam activation in this study. The variation of pore structure of the activated carbons were investigated according to different carbonization temperatures. Yield, surface area, pore volume and pore structure of this activated carbon were compared with those of activated carbon prepared without carbonization. The investigated carbonization temperature ranged from 700${\circ}C$ to 1,000${\circ}C$. Carbonization was carried out in nitrogen atmosphere for 70 minutes and activation was performed by steam at 950${\circ}C$ for 210 minutes. Surface area and pore volume of the resulting activated carbons increased with carbonization temperature. Also pore volume increased by 20% compared to the activated carbon without carbonization. Especially, in mesopore region, the activated carbon carbonized at 900${\circ}C$ had more pores by 60% than that of activated carbon carbonized at other temperature.

  • PDF

Removal of Pesticide (Endosulphan) from Water via Adsorption onto Activated Carbons Developed from Date Pits

  • Ashour, Sheikha.S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • Activated carbons were prepared by impregnation of crushed clean date pits in concentrated solutions of phosphoric acid or zinc chloride followed by carbonization in absence of air at $600^{\circ}C$. Steam-activated carbon was prepared by gasifying $600^{\circ}C$-carbonization product at $950^{\circ}C$ to a burn-off = 50%. KOH- activated carbon was prepared by impregnating date pitscarbonization product obtained at $450^{\circ}C$ in concentrated KOH solution followed by carbonization at $840^{\circ}C$. Textural properties of these carbons were determined from nitrogen adsorption at $-196^{\circ}C$ and the chemistry of the carbon surface was investigated by determination and of the surface carbon-oxygen (C-O) groups using bases of variable strength and dilute HCl. The adsorption of endosulphan at $27^{\circ}C$ on all the carbons prepared was undertaken. Adsorption of this pesticide at 32 and $37^{\circ}C$ was also undertaken for steam-activated and KOH-activated carbons. Phosphoric acid-activated carbons and steamactivated carbons are mainly microporous and have high surface concentration of C-O groups of acidic nature. Steamactivated and KOH-activated carbons exhibited surface areas > 1000 $m^2/g$ and contain micro and non-micrpores. The adsorption of endosulphan was related to the surface area of non-micropores and was retarded by the high concentration of surface C-O groups. The thermodynamic properties indicated the feasibility of the adsorption process and the possible regeneration of the carbon for further use.

Variation of Pore Structure of Coal-based Activated Carbon with Burn-off of Steam Activation (수증기 활성화법으로 제조된 석탄계 활성탄의 Burn-off에 따른 세공구조의 변화)

  • Lee, Song-Woo;Moon, Jang-Cheon;Lee, Chang-Han;Choi, Dong-Hoon;Ryu, Dong-Chun;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2141-2148
    • /
    • 2000
  • This study is to investigate changes of pore structure with different burn-off degree of steam activated carbons manufactured from domestic anthracite. The activated carbons were characterized by adsorption of nitrogen at 77 K. Steam activation substantially enhanced the porosity of the activated carbons. Burn-off increased linearly according to increasing activation time, and total pore volume and BET surface area increased with burn-off. Activation at $800^{\circ}C$ increased more micropore volume than that at $950^{\circ}C$. Activated carbons manufactured at high temperature had less microporosity than that at lower temperature, but had more developed macroporosity. The steam activation produced an enlargement of pore below $100{\AA}$ diameter in the activated carbons. Furthermore, the porosity in the $6{\sim}40{\AA}$ pore diameters range increased considerably with the degree of burn-off.

  • PDF

Characterisitcs of steam activated carbon made from Youngwall coal (수중기 활성화법으로 제조된 영월 석탄계 활성탄의 특성 연구)

  • 이송우;권태훈;나영수;최동훈;류동춘;송승구
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • Activated carbons were prepared from Youngwall coal by steam activation in this study. The feasibility of the Youngwall coal to commercial activated carbon was examined. The variation of pore structures and the development of porosity in activated carbons were investigated by changing activation conditions in batch type apparatus. The values of BET surface area and adsorption capacity of iodine and methylene blue of the resulting activated carbons were obtained as high as 1,000$m^2$m^2$$/g, 900mg/g, 150$m\ell$/g, respectively. Youngwall activated carbon prepared in this study showed much higher pore volume in pore diameter over 10 than that of commercial reference activated carbon(Ningxia Taihua ZJ-15C) produced from China anthracite.

  • PDF

X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions

  • Girgis, Badie S.;Temerk, Yassin M.;Gadelrab, Mostafa M.;Abdullah, Ibrahim D.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • A series of activated carbons (ACs) were derived from sugarcane bagasse under two activation schemes: steam-pyrolysis at $600-800^{\circ}C$ and chemical activation with $H_3PO_4$ at $500^{\circ}C$. Some carbons were treated at 400, $600^{\circ}C$, or for 1-3 h, and/or in flowing air during pyrolysis of acid-impregnated mass. XRD profiles displayed two broad diffuse bands centered around $2{\theta}=23$ and $43^{\circ}$, currently associated with diffraction from the 002 and 100/101 set of planes in graphite, respectively. These correspond to the interlayer spacing, Lc, and microcrystallite lateral dimensions, La, of the turbostratic (fully disordered) graphene layers. Steam pyrolysis-activated carbons exhibit only the two mentioned broad bands with enhancement in number of layers, with temperature, and small decrease in microcrystallite diameter, La. XRD patterns of $H_3PO_4$-ACs display more developed and separated peaks in the early region with maxima at $2{\theta}=23$, 26 and $29^{\circ}$, possibly ascribed to fragmented microcrystallites (or partially organized structures). Diffraction within the $2{\theta}=43^{\circ}$ is still broad although depressed and diffuse, suggesting that the intragraphitic layers are less developed. Varying the conditions of chemical activation inflicts insignificant structural alterations. Circulating air during pyrolysis leads to enhancement of the basic graphitic structure with destruction and degradation in the lateral dimensions.

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M.;Patel, Hemang;Manocha, L.M.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.

Preparation of Activated Carbon from Pine Bark by Steam Activation (소나무 수피로부터 수증기 활성화에 의한 활성탄 제조)

  • 문성필;황의동
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • Activated carbons were prepared from pine bark by steam activation, and pore structures and specific surface areas were then investigated. Three different types of kilns were used for the activation. When the stationary-vertical-or stationary-horizontal-type kiln was used for the steam activation to prepare an activated carbon from the bark, it was not possible to produce activated carbon having high specific surface areas exceeding 1,000 $m^2/g$. Using bark powder improved the specific surface area, but it was still not high enough. When the rotary-horizontal-type kiln was used for the activation, the activated carbons prepared had high specific surface areas of more than 1,000$m^2/g$, which was similar to a commercial first-grade activated carbon. The activated carbon prepared by the rotary kiln had a wide distribution of pore size ranging from microporous to mesoporous.

  • PDF

Modeling and Characterization of Steam-Activated Carbons Developed from Cotton Stalks

  • Youssef, A.M.;Hassan, A.F.;Safan, M.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • Physically and chemically activated carbons (ACs) exhibited high adsorption capacities for organic and inorganic pollutants compared with other adsorbents due to their expanded surface areas and wide pore volume distribution. In this work, seven steam-ACs with different burn-off have been prepared from cotton stalks. The textural properties of these sorbents were determined using nitrogen adsorption at $-196^{\circ}C$. The chemistry of the surface of the present sorbents was characterized by determining the surface functional C-O groups using Fourier transform infrared spectroscopy, surface pH, $pH_{pzc}$, and Boehm's acid-base neutralization method. The textural properties and the morphology of the sorbent surface depend on the percentage of burn-off. The surface acidity and surface basicity are related to the burn-off percentage. A theoretical model was developed to find a mathematical expression that relates the % burn-off to ash content, surface area, and mean pore radius. Also, the chemistry of the carbon surface is related to the % burn-off. A mathematical expression was proposed where % burn-off was taken as an independent factor and the other variable as a dependent factor. This expression allows the choice of the value of % burn-off with required steam-AC properties.