• Title/Summary/Keyword: steam modification

Search Result 39, Processing Time 0.031 seconds

A vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform (일반화 대칭변환을 이용한 원전 증기발생기 전열관 중심인식 비젼 알고리즘)

  • 장태인;곽귀일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1367-1370
    • /
    • 1997
  • This paper presents a vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform, which is used for ECT(Eddy Current Test) of steam generator tubes in nuclear power plants. The geometrical properties of the image representing steam generator tubes shows that they have amost circular or somewhat elliptic appearances and each tube has strong symmetry about its center. So we apply the generalized symmetry transform to finding centers of steam geneator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of steam generator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of tubes due to the shadow effect generated by the local light installed inside steam generator. Therefore we make the generalized symmetry transform modified, which uses a modified phase weight function in getting the symmetry magnitude in order to overcome the misleading effect by the local light. The experimental results indicate that the proposed vision algorithm efficiently recongnizes centers of steam generator tubes.

  • PDF

The Design Optimization of Preventive Measure Against APR1400 Steam Generator Tube Fretting Wear (신형경수로 증기발생기 마모손상 억제를 위한 설계최적화)

  • Lim, Hyuk-Soon;Park, Young-Sheop;Lee, Kwang-Han;Lee, Seok-Ho;Chung, Dae-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2047-2052
    • /
    • 2004
  • Inconel-600 alloy has been used as steam generator tube material for current pressurized water reactors (PWRs). The long-term operation of steam generators showed that the use of this material induced localized corrosion damages and increased tube wear of steam generator. To protect these problems, steam generator tube material is being changed to Inconel-690 alloy. Based on the current trend, we have chosen Inconel 690 as the Advanced Power Reactor 1400 (APR1400) steam generator(SG) tube material and performed the design optimization of preventive measure against tube fretting wear for the APR1400 steam generator. In this paper, we examined the technical consideration in this modification : the selection of material, wear characteristics, effect of the Egg-crate Flow Distribution Plate installation, and effect analysis of vertical strip installation.

  • PDF

Development of Anti-fluttering Tilting Pad Journal Bearing with the Shape Modification of Upper Pad (상부패드의 형상 변경을 통한 'Anti-fluttering 틸팅패드 저널베어링' 개발)

  • Yang Seong-Heon;Nah Un-Hak;Park Heui-Joo;Kim Chae-Sil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.796-805
    • /
    • 2005
  • The tilting pad journal bearings have been widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unloaded pads and the break of locking pins etc. by pad fluttering are continuously taken place in the actual steam turbines. The purpose of this paper is to develop a new bearing model that can prevent bearing problems effectively by pad fluttering in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of fluttering mechanism performed by previously research works. The fluttering characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad fluttering nearly does not occurred in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad fluttering does not detect in the application of acture steam turbines.

  • PDF

The Use of Inconel 690 as Tube Material For Advanced Pressurized Water Reactor Steam Generator (신형경수로의 증기발생기 전열관 재질 Inconel-690 적용)

  • Lim, Hyuk-Soon;Chung, Dae-Yul;Byun, Sung-Chul;Lee, Kwang-Han
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.49-54
    • /
    • 2003
  • Most of the operating pressurized water reactors (PWRs)has chosen Inconel 600 as steam generator tubing. The long-term operation of steam generators showed that the use of this material induced localized corrosion damages. The current trend is using Inconel 690 as a tube material for the replacement steam generators. Based on the current trend, we have chosen Inconel 690 for the advanced Power Reactor 1400 (APR1400) steam generator tube material. In this paper, we examined the technical consideration in this modification: the effect of chemical composition, thermal conductivity, corrosion resistance and wear characteristics

  • PDF

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

Experiment on Coolability through External Reactor Vessel Cooling according to RPV Insulation Design (국내원전 단열재 설계특성에 따른 외벽냉각 효과검증 실험)

  • Kang, Kyoung-Ho;Park, Rae-Joon;Kim, Snag-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1578-1583
    • /
    • 2003
  • LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the coolability in case of the external reactor vessel cooling (ERVC). All the 4 tests have been performed using Alumina iron thermite melt as a corium simulant. Due to the limited steam venting through the insulation, steam binding occurred inside the annulus in the KSNP case simulation. On the contrary, in the tests which were performed for simulating the APR1400 insulation design, sufficient water ingression and steam venting through the insulation lead to effective cool down of the vessel characterized by nucleate boiling. It could be found from the experimental results that modification of the insulation design allowing sufficient ventilation could increase the positive effects of the external reactor vessel cooling.

  • PDF

Schemes to enhance the integrity of P91 steel reheat steam pipe of a high-temperature thermal plant (고온 화력 P91강 재열증기배관의 건전성 제고 방안)

  • Lee, Hyeong-Yeon;Lee, Jewhan;Choi, Hyun-Sun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.74-83
    • /
    • 2020
  • A number of so-called 'Type IV' cracking was reported to occur at the welded joints of the P91 steel or P92 steel reheat steam piping systems in Korean supercritical thermal power plants. The reheat steam piping systems are subjected to severe thermal and pressure loading conditions of coolant higher than 570℃ and 4MPa, respectively. In this study, piping analyses and design evaluations were conducted for the piping system of a specific thermal plant in Korea and suggestions were made how structural integrity could be improved so that type IV cracks at the welded joints could be prevented. Integrity evaluations were conducted as per ASME B31.1 code with implicit consideration of creep effects which was used in original design of the piping system and as per nuclear-grade RCC-MRx code with explicit consideration of creep effects. Comparisons were made between the evaluation results from the two design rules. Another approach with modification or reduction of the redundant supports in the piping systems was investigated as a tool to mitigate thermal stresses which should essentially contribute to prevention of Type IV cracking without major modification of the existing piping systems. In addition, a post weld heat treatment method and repair weld method which could improve integrity of the welded joint of P91 steel were investigated.

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

Theoretical Exploration of a Process-centered Assessment Model for STEAM Competency Based on Learning Progressions (학습발달과정에 근거한 과정중심 STEAM 역량 평가 모델에 대한 이론적 탐색)

  • Ryu, Suna;Kwak, Youngsun;Yang, Sung Ho
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.132-147
    • /
    • 2018
  • The goal of this research is to suggest a theoretical process-centered assessment model based on Learning Progressions of key competencies in the context of STEAM instructions. The "Process-Products Combined Module-type (P2CM) STEAM Assessment Model (P2CM STEAM Assessment Model, hereafter) can be used both as an instructional model and as an assesment model, applicable for various STEAM topics and instructional types. consists of 3 axes. The first X axis stands for 4C competencies that should be emphasized through STEAM instruction. The second Y axis stands for the types and the hierarchy of STEAM instructions. The third Z axis stands for the assessment standards based on LP. We also exemplified an assessment module combined creativity competency with creativity-based instruction based on . Based on the research results, we suggested elaboration of assessment models based on Korean LP research outcomes, development and supply of formative assessment models through field-based in-depth research, modification of formative assessment models with the participation of teacher communities and in-service teachers, and the necessity of further research on assessment models for tracking LP.

Process Design for Recovery of Unreacted Styrene Monomer for Utility Saving (유틸리티 절감을 위한 미반응 스티렌 모노머 회수공정의 설계)

  • Bong, Jooyoung;Na, Sujin;Lee, Kwang soon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • A study for process design to curtail the utility consumption during residual styrene monomer recovery in an ABS polymerization process was carried out. Among different techniques for residual monomer recovery, the steam stripping is dominantly employed in industries. The existing process, however, consumes a large amount of utility (steam and cooling water), and this study focused on the design of a new process that can substantially spare the utility consumption. A new process was configured to utilize the latent heat of the stripping steam, which is condensed with the monomer using cooling water after exiting the stripper. The condenser was modified to use vacuum state water as coolant and to generate vacuum state steam using the latent heat of the stripping steam. The steam is injected to the stripper as the stripping steam after upgrading using a compressor. Through this modification, consumption of steam and also cooling water could be significantly reduced at some expense of electricity for compressor operation.