• Title/Summary/Keyword: steam autoclave

Search Result 38, Processing Time 0.025 seconds

Evaluation of Biocompatibility of Anodized and Hydrothermally Treated Pure Niobium Metal (양극산화와 열수처리한 순수 니오비움 금속의 생체활성 평가)

  • Won, Dae-Hee;Choi, Un-Jae;Lee, Min-Ho;Bae, Tae-Sung
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10\times10mm$ in dimension were polished sequentially from #600, #800, #1000 emery paper. The surface pure niobium specimens were anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was 10 $mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at 300$^{\circ}C$ for 2 hours using an autoclave. Then, specimens were immersed in the Hanks' solution with pH 7.4 at 37$^{\circ}C$ for 30 days. The surface of specimen was characterized by scanning electron microscope(SEM), energy dispersive X-ray microanalysis(EDX), potentiostat/galvanostat test, and cytotoxicity test. The results obtained was summarized as follows; According to the result of measuring corrosion behavior at 0.9% NaCl, corrosion resistance was improved more specimens treated with anodic oxide than in hydrothermal treated ones. The multi-porous oxide layer on surface treated through anodic oxidation showed a structure that fine pores overlap one another, and the early precipitation of apatite was observed on the surface of hydrothermal treated samples. According to the result of EDX after 30 days deposition in Hanks' solution, Ca/P was 1.69 in hydrothermal treated specimens. In MTT test, specimens treated through anodic oxidation and hydrothermal treated ones showed spectrophotometer similar to that of the control group. Thus no significant difference in cytotoxicity was observed (P>0.05).

  • PDF

EFFECT OF ELECTROLYTE CONCENTRATION ON THE SURFACE CHARACTERISTICS OF ANODIZED AND HYDROTHERMALLY-TREATED TI-6AL-7NB ALLOY (전해질 농도가 양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성에 미치는 영향)

  • Jang Tae-Yeob;Song Kwang-Yeob;Bae Tae-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.684-693
    • /
    • 2005
  • Statement of problem: Ti-6Al-7Nb alloy is used instead of Ti-6Al-4V alloy that was known to have toxicity. Purpose: This study was performed to investigate the effect of electrolyte concentration on the surface characteristics of anodized and hydrothermally-treated Ti-6Al-7Nb alloy Materials and methods: Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1,000 SiC paper ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed at current density $30mA/cm^2$ up to 300 V in electrolyte solutions containing $\beta-glycerophosphate$ disodium salt hydrate $(\beta-GP)$ and calcium acetate (CA). Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. All samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. Results and conclusion: The results obtained were summarized as follows: 1. After hydrothermal treatment, the precipitated HA crystals showed the dense fine needle shape. However, with increasing the concentration of electrolyte they showed the shape of thick and short rod. 2. When the dense fine needle shape crystals was appeared after hydrothermal treatment, the precipitation of HA crystals in Hanks' solution was highly accelerated. 3. The crystal structures of $TiO_2$ in anodic oxide film were composed of strong anatase peak and weak rutile peak as analyzed with thin-film X-ray diffractometery. 4. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal in Hanks' solution.

Surface Characteristics of Anodized and Hydrothermally-Treated Ti-6Al-7Nb Alloy (양극산화와 열수처리한 Ti-6Al-7Nb 합금의 표면 특성)

  • Kim, Moon-Young;Song, Kwang-Yeob;Bae, Tae-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.101-110
    • /
    • 2006
  • This study was performed to investigate the surface properties and in vitro biocompatibility of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Discs of Ti-6Al-7Nb alloy of 20 mm in diameter and 2 mm in thickness were polished sequentially from #300 to 1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. Anodizing was performed using a regulated DC power supply. The applied voltages were given at 240, 280, 320, and 360 V and current density of $30mA/cm^2$. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. Samples were soaked in the Hanks' solution with pH 7.4 at $36.5^{\circ}C$ during 30 days. The results obtained were summarized as follows; 1. The oxide films were porous with pore size of $1{\sim}5{\mu}m$. The size of micropores increased with increasing the spark forming voltage. 2. The main crystal structure of the anodic oxide film was anatase type as analyzed with thin-film X-ray diffractometery. 3. Needle-like hydroxyapatie (HA) crystals were observed on anodic oxide films after hydrothermal treatment at $300^{\circ}C$ for 2 hours. The precipitation of HA crystals was accelerated with increasing the spark forming voltage. 4. The precipitation of the fine asperity-like HA crystals were observed after being immersed in Hanks' solution at $37^{\circ}C$. The precipitation of HA crystals was accelerated with increasing the spark forming voltage and the time of immersion in Hanks' solution. 5. The Ca/P ration of the precipitated HA layer was equivalent to that of HA crystal as increasing the spark forming voltage and the time of immersion in Hanks' solution.

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

A Study on Improving the Non-Combustible Properties of High-Density Fiber Cement Composites (고밀도 섬유 시멘트 복합체 불연특성 개선에 관한 연구)

  • Song, Tae-Hyeob;Jang, Kyong-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • The high-density fiber composite manufacturing method by the extrusion molding method has the characteristic that continuous production is possible, and the product is molded through a mold forming a specific cross-section. OPC is used as a defect material, an appropriate amount of SiO2 is supplied for CaO reaction activity, and high density and high strength are expressed through steam and autoclave curing. However, due to the use of organic reinforcing fibers, the flame duration exceeds the regulations during the non-combustible performance test, making it difficult to secure performance. In this study, the product was produced by mixing alkali-resistant organic fiber and fly ash having voids as a binder by replacing the existing polypropylene fiber. appeared to be possible.

Effect of Final Annealing Temperature on Precipitate and Oxidation of Zr- Nb Alloys (Zr-Nb계 합금의 석출물 특성과 산화 특성에 미치는 마지막 열처리 온도의 영향)

  • Yun, Yeong-Gyun;Jeong, Yong-Hwan;Park, Sang-Yun;Wi, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.647-654
    • /
    • 2001
  • Effects of final annealing temperature on the precipitate and oxidation were investigated for the Zr-lNb and Zr-lNb-lSn-0.3Fe alloys. The microstructure and oxidation of both alloys were evaluated for the optimization of final annealing process of these alloys in the annealing temperature regime of 450 to $800^{\circ}C$. The corrosion test was performed under steam at $400^{\circ}C$ for 270 days in a static autoclave. The oxide formed was identified by low angle X-ray diffraction method. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. Above $600^{\circ}C$, the precipitate area volume fraction of Zr-lNb and Zr-1Nb-lSn-0.3Fe alloys appeared to be increased with increasing the final annealing temperature. The corrosion resistance of Zr-lNb was higher than that of Zr- lNb-lSn-0.3Fe alloy. The corrosion rate of both alloys were accelerated due to the formation and growth of $\beta$-Zr with increasing the annealing temperature.

  • PDF

Optimum Mix of Extrusion panel Using Low Energy Curing Admixture (LA) based on Ground Granulated Blast-Furnace Slag and Ladle Furnace Slag (고로슬래그와 환원슬래그를 기반으로 한 저에너지양생용 결합재를 사용한 압출성형패널의 최적배합)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.13-22
    • /
    • 2015
  • $CO_2$ emitted from building materials and construction materials industry reaches about 67 million tons, which occupy about 30 % of $CO_2$ emitted from the construction field. Controls on the use of consumed fossil fuels and reduction of emission gases are essential for the reduction of $CO_2$ in the construction area as we reduce the second and third curing to emit $CO_2$ in the construction materials industry. Accordingly, this study applied the low energy curing admixture (hereinafter "LA") to the extruded panels to observe the physical properties, depending on the mixing amount of fiber, type of fiber and mixing ratio of fiber. The type of fiber did not appear to be a main factor to affect strength, while the LA mixing ratio and mixing amount of fiber appeared to be major factors to affect strength. Especially, the highest strength was developed when the LA mixing ratio was 40%, whereas the test object with the mixing ratio of 50% resulted in the decrease of strength. In addition, it appeared that the mixing ratio of fiber greatly affected flexural strength and strength increased as the mixing ratio increased.

Comparison of Antioxidant and Functional Compounds in Korean Conventional and Chinese Seed Ginger (Zingiber officinale Roscoe) Following Steam Treatment (증숙처리에 따른 재래생강 및 중국종자생강의 항산화 및 기능성물질 비교)

  • Su-Jin Kim;Jong-Sin Kim;Min-Ji Kim;Ji-Yeon Kang;Hyeon-Jeong Choi;So-Yeon Kim;Ha-Euu Lee;Tae-Hyuk Kwon;Mee-Sook Kang
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.264-272
    • /
    • 2023
  • The aim of this study was to compare the antioxidant activities and functional contents of Korean conventional and Chinese seed gingers from the Jeollabuk-do Wanju and Chungcheongnam-do Seosan regions. Ginger samples were subjected to steaming treatments for different durations (2-8 h) at 121℃ using an autoclave. The antioxidant activity was evaluated by measuring total polyphenol and flavonoid contents and ABTS and DPPH radical scavenging activities, while functional ingredient contents were analyzed for gingerols and shogaols. The results showed that Wanju conventional seed ginger (WO-2) had the highest total polyphenol (85.24 mg GAE/g) and flavonoid (98.14 RE/100 g) contents, surpassing that of the control in all steamed groups at 6 h. ABTS radical scavenging activity showed a strong correlation with total polyphenol and flavonoid contents. The control groups indicated that Korean conventional seed ginger had 1.0-1.3 times higher gingerol contents compared to Chinese seed ginger. Furthermore, the content of shogaols, considered major functional ingredients, increased significantly with longer steaming durations, reaching the highest content (1,793 mg/kg) at 8 h, which was 1.0-1.8 times higher in Korean conventional seed ginger than that in Chinese seed ginger. These experiments provide valuable data supporting the excellence of Korean conventional seed ginger in the future.