• Title/Summary/Keyword: steady-state fluorescence

Search Result 41, Processing Time 0.025 seconds

Effects of Light Intensity on the Steady-State Fluorescence Quenching Kinetics

  • Mino Yang;Sangyoub Lee;Kook Joe Shin;Kwang Yul Choo;Duckhwan Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.414-423
    • /
    • 1991
  • Effects of light intensity on the steady-state fluorescence quenching kinetics are examined for general cases where the bimolecular quenching can occur via long-range energy transfer processes and the potential of mean force between the energy donor and acceptor molecules is not negligible. Approximate analytic expressions are derived for the steady-state quenching rate constant and for the ratio of the steady-state intensity of unquenched to quenched fluorescence. The analytic results are compared with the exact results obtained from numerical analysis and the results of conventional theories.

Fluorescence Characterization of LaRC PETI-5, BMI, and LaRC PETI-5/BMI Blends

  • Cho, Donghwan;Yang, Gyeongmo
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • In the present study, the fluorescence behavior ova phenylethynyl-terminated imide (LaRC PETI-5) resin, a bismaleimide (BMI) resin, and various LaRC PETI-5/BMI blends with different blend compositions has been characterized as a function of heat-treatment temperature, using a steady-state fluorescence technique with a front-face illumination method far solid-state films. It is observed that there are distinguishable changes in the spectral shape, size, and position of fluorescence with varying heat-treatment temperature in the pure and blend samples. The result is qualitatively explained in terms of charge transfer complex formation as well as microenvironmental change with local mobility and viscosity occurring in the LaRC PETI-5, BMI, and their blends during the cure process. The result also implies that a steady-state fluorescence technique may be a useful tool to understand the processing conditions of polyimides and their blends in the film form on the basis of their thermo-photophysical responses.

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

Picosecond Photoionization Processes of N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) in Water

  • Lee, Min-Yung;Jang, Du-Jeon;Kim, Dong-Ho;Lee, Sun-Sook;Boo, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.17-20
    • /
    • 1992
  • Photoionization processes of TMPD in $H_2O$ and $D_2O$ were studied, by measuring steady-state absorption, emission, fluorescence excitation spectra, and fluorescence lifetimes on picosecond time scale. The steady-state absorption spectra showed that there exists a cation-ion pair (Wurster's Blue) in $H_2O$ and in $D_2O$ in the electronic ground state. Temperature and excitation wavelength dependence were also studied and the results show that the photoionization reaction in water is an activated process and the fluorescence lifetime is independent of the vibrational excess energy in the uv excitation range of 283-310 nm.

Photophysical Behaviors of Biphenylcarboxylic Acids in Various Solvents; Excited-State Geometry Change and Intramolecular Charge Transfer

  • Yoon Minjoong;Cho Dae Won;Lee Jae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • The solvent-dependent photophysical properties of 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid(4BPCA), which have a pre-twisted conformation in the ground state, have been investigated. The fluorescence spectra of 4BPCA show vibrational structure with a non-mirror image to the absorption spectra in nonpolar solvent while those of 2BPCA show no structure even in nonpolar solvents. As the solvent polarity increases, the fluorescence spectra become diffuse and broad with a strong red shift resulting in the large Stokes shift. The large fluorescence Stokes shift of BPCA's in polar solvent is also partially due to an intramolecular charge transfer (ICT) interaction in the excited state, as demonstrated by the large dipole moment in the excited state (7.6-10.6 D). The fluorescence decay behaviors of BPCA's (decay-times and their pre-exponential factors) also depend on solvent polarity in agreement with the solvent-dependent properties of the steady-state fluorecence. The data have been discussed in terms of change in the excited-state potential energy surface with respect to change of the dihedral angle of biphenyl moiety.

A FRET Assay for Celiac Disease

  • Lee, Sae A;Cho, Chul Min;Jang, Il Ho;Kang, Jung Sook
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.160-166
    • /
    • 2016
  • To provide a basis for a homogeneous fluorescence resonance energy transfer (FRET) immunoassay for celiac disease, we carried out a FRET experiment using guinea pig tissue transglutaminase (tTG) and antibodies to tTG (anti-tTG) purified from rat serum. Fluorescein was utilized as the probe, and a nonfluorescent dye, QSY 7 served as the quencher. We labeled anti-tTG and tTG with fluorescein isothiocyanate and QSY 7 succinimidyl ester, respectively. Fluorescein-labeled anti-tTG was the donor, and QSY 7-labeled tTG was the acceptor of the FRET experiment. When we titrated fluorescein-labeled anti-tTG with QSY 7-labeled tTG, we observed a large decrease in the steady-state fluorescence intensity, which was due to strong FRET from fluorescein-labeled anti-tTG to QSY 7-labeled tTG. Using time-resolved fluorescence spectroscopy, we could also observe a decrease in the fluorescence lifetime, which confirms the steady-state data. We expect that these results might be useful in the development of a novel fluorescence immunoassay for an easy screening and follow-up of celiac patients.

The Effect of Cure History on the Fluorescence Behavior of an Unsaturated Polyester Resin with A Fluorescence Probe

  • Donghwan Cho;Yun, Suk-Hyang;Bang, Dae-Suk;Park, Il-Hyun
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.282-289
    • /
    • 2004
  • We have extensively characterized the fluorescence behavior of unsaturated polyester (UP) resin in the absence and presence of a 1,3-bis-(l-pyrenyl)propane (BPP) fluorescent probe at various dynamic and isothermal cure histories by means of a steady-state fluorescence technique using a front-face illumination equipment. In addition, we explored the effect of the fluorescence intensity on the relaxation of the fluorescent probe in the UP resin by resting the dynamically and isothermally cured resin at ambient temperature and pressure for 24 h. The monomer fluorescence intensity, which has two characteristic peaks at 376 and 396nm, changed noticeably depending on the cure temperature and time and provided important information with respect to the molecular and photophysical responses upon curing. The result of the fluorescence study indicates that the increased local viscosity and restricted molecular mobility of the UP resin surrounding the BPP probe after curing are both responsible for the enhancement of the monomer fluorescence intensity. Our results also demonstrate that once the BPP probe has enough time to rearrange and become isolated prior to fluorescence, a sufficient amount of fluorescence is emitted. Therefore, we note that the fluorescence behavior of this UP resin system is influenced strongly by the relaxation process of the fluorescent probe in the resin as well as process used to cure the resin.

Effect of Ganglioside $G_{M3}$ on the Erythrocyte Glucose Transporter (GLUT1): Conformational Changes Measured by Steady-State and Time-Resolved Fluorescence Spectroscopy

  • Yoon, Hae-Jung;Lee, Min-Yung;Jhon, GiI-Ja
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.240-245
    • /
    • 1997
  • Interactions between ganglioside $G_{M3}$ and glucose transporter, GLUT1 were studied by measuring the effect of $G_{M3}$ on steady-state and time-resolved fluorescence of purified GLUT1 in synthetic lipids and on the 3-O-methylglucose uptake by human erythrocytes. The intrinsic tryptophan fluorescence showed a GLUT 1 emission maximum of 335 nm, and increased in the presence of $G_{M3}$ by 12% without shifting the emission maximum, The fluorescence lifetimes of intrinsic tryptophan on GLUT1 consisted of a long component of 7.8 ns and a short component of 2,3 ns and $G_{M3}$ increased both lifetime components. Lifetime components were quenched by acrylamide and KI. Acrylarnide-mduced quenching of long-lifetime components was partly recovered by $G_{M3}$ However. KI-induccd quenching of short- and long-lifetime components was not rescued by $G_{M3}$. The anisotropy of 1.6-diphenyl-1.3.5-hexatriene (DPH)-probed dimyristoylphosphatidylcholine (DMPC) model membrane was also increased with $G_{M3}$ incorporation, The transport rate of 3-O-methylglucose increased by 20% with $G_{M3}$ incorporation on the erythrocytes, Therefore, $G_{M3}$ altered the environment of lipid membrane and induced the conformational change of GLUT1.

  • PDF

In-vivo Fluorescence Characteristics of Pteridine for Identification of Phytoplankton (Pteridine계 화합물의 in-vivo 형광 특성을 이용한 식물 플랑크톤의 동정에 관한 연구)

  • PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.219-228
    • /
    • 1992
  • The steady state and decay characteristics of primary fluorescence of twelve clones of phytoplankton were investigated in vivo. At 380-435nm region, intense fluorescence emission spectra were obtained from the all phytoplankton, examined', The primary fluorescence of phytoplankton in different growth states was examined In order to find out fluorophores for the observed fluorescence, eight different pteridine derivatives in phosphate buffer solution were examined for their fluorescence characteristics and compared with those of phytoplankton. Fluorescence lifetimes $(\tau)$ and decay curves were compared with standard solution of candidate organic compounds. Decay kinetics of observed fluorescence were shown as hi- and tri-exponential decay curves with 430nm cut-off filter for phytoplankton. Comparison between fluorescence characteristics of bacteria and phytoplankton showed distinct differences for their steady state fluorecence spectra and decay kinetics.

  • PDF

Excimer Fluorescence Quenching of Poly (styrene-co-acrylic acid)-Eu Complex by Simple Hydrocarbons in Tetrahydrofuran Solutions

  • Park, Doo-Hee;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.42-45
    • /
    • 1986
  • Quenching of excimer fluorescence from polystyrene-acrylic acid copolymers containing $Eu^{3+}$ has been studied in tetrahydrofuran solution using simple aromatic hydrocarbons as quenchers under steady-state conditions. Aromatic hydrocarbons quenched collisionally the excimer fluorescence and their rate constants of quenching were determined. The magnitude of quenching constant is interpreted in terms of the cube root of the molar volume of quencher. Cycloalkanes were not effective in quenching the excimer fluorescence possibly due to different solubility characteristics from aromatic hydrocarbons.