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Effects of light intensity on the steady-state fluorescence quenching kinetics are examined for general cases where 

the bimolecular quenching can occur via long-range energy transfer processes and the potential of mean force between 

the energy donor and acceptor molecules is not negligible. Approximate analytic expressions are derived for the 

steady-state 아uenching rate constant and for the ratio of the steady-state intensity of unquenched to quenched fluores­

cence. The analytic results are compared with the exact results obtained from numerical analysis and the results 

of conventional theories.

Introduction

There have been many studies of the quenching of fluores­

cence from both experimental1-10 and theoretical perspecti­

ves11'19. In some experiments2fluorescent m이ecules are 

produced by a light pulse of short duration and the decay 

of fluorescence intensity from the sample is followed as a 

function of time. In other experiments1,2,910, the effects of 

quencher molecules on the steady-state intensity of fluores­

cence stimulated by an illumination of constant intensity are 

examined. The present theory addresses the latter class of 

experiments although the basic framework is also relevant 

to the former20.

When the concentration of fluorescent molecules is much 

smaller than that of quencher molecules, a quencher mole­

cule may be able to dispose of the energy it received from 

a fluorescent molecule before it has an opportunity to quench 

again. If this is the case, the fluorescence quenching kinetics 

can be described by the following reaction scheme11:

D+h&「〉D* (excitation of fluorophors) (1.1)

D* 一&马 D+f (fluorescence) (1.2)

D* D (nonradiative unimolecular decay) (1.3)

D*+4—&오승/)+4 (bimolecular quenching) (1.4)

In these equations, Ft kFf 為快，and 如 represent the rate con­

stants of the respective processes. kF and Rnr may be 

considered to be independent of time, and their sum, deno­

ted hereafter by & can be determined experimentally as 

the inverse of the fluorescent life time x0 in the absence 

of quencher; that is,

如+及曲三(1.5)

F in Eq. (1.1), denoting the transition probability per unit 

time, depends on the intensity of, radiation and thus varies 

with time in general. The bimolecular quenching rate coeffi­
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cient 如 in Eq. (1.4) depends on the distribution of the quen­

cher molecules A around Z)*. When the illative diffusion 

between D* and A is slow, this distribution deviates from 

the equilibrium one and varies with time, and so does the 

bimolecular quenching coefficient kQ.

The time-dependence of the concentration (number den­

sity) of D* molecules may then obey the phenomenological 

rate law:

으5 = - 皿叮 +F(g] -也 (g*© (1.6) 

where [D~\ and [Z>*] denote the number densities of D and 

D* molecules at time t, respectively, and Ca is the number 

density of A molecules that is essentially constant in time. 

By solving this differential equation, we obtain

LZ)*] = Cd (上)exp[Ts(£-i)— (口)

-a J： 妬&(니 (1.7)

where Co is the total number density of D molecules. That 

is(芸=0叮+ 0丄
The time-dependece of may also be expressed as

[〃*]=卩diF(T)[Z)]G〔q t) (1.8)
J o

Here, gives number of Z)* molecules generated

in a unit volume between times r and r+Jr, and G(q £) 

denotes the probability that a D* molecule excited at time 

r remains in the excited state at time t. This is an exact 

expression. In conventional theories11, however, it is assumed 

that each D* molecule which has been just excited is sur­

rounded by an equilibrium distribution of A molecules and 

that the A molecule distribution around each D* follows the 

same time evolution thereafter. This means that the decay 

probability of D* depends only on the time elapsed after 

excitation regardless of when the excitation occurred. That 

is, G(t, t) in Eq. (1.8) is approximated as

G(q t)xG(t-x) = exp|^-ks(t-x)-Ca &1场，(勺)](1.9) 
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where 磴(i) is the quenching rate coefficient obtained for 

the initial condition that each D* molecule created at 勺=0 

is surrounded by an equilibrium distribution of A molecules; 

see Eq. (3.62) below. Consequently, it is different from 如@i) 

in Eq. (1.7).

In most analyses of experimental data1-8, one goes one 

step further by assuming that [/>]>[£>*] and thus [D] re­

mains nearly constant in time; that is, Then Eq.

(1.8) gives

[D*] = Cp F(t) exp^-/?s(^-r) —Ca Jo dW獄이

(1-10)

Comparison of Eq. (1.10) with Eq. (1.7) shows clearly that 

its validity is limited by the condition that the intensity of 

illumination which excites D molecules ought to be weak 

to ensure that [/>*]<[£>].

The assumption that each Z>* molecule which has been 

just excited is surrounded by an equilibrium distribution of 

A molecules fails when the duration of light pulse is not 

so short compared to the life time of D* molecules. For in­

stance, Z>* molecules which were recently quenched but re­

excited shortly will see, on the average, more A molecules 

in their vicinity than the equilibrium distribution that is pre­

supposed in conventional theories. For such D* molecules, 

the decay law would be different from that given by Eq.

(1.9) . The opportunity of repeated excitations grows with in­

creases in the intensity and time width of light pulse and 

also with increase in the quencher concentration, and the 

conventional theories of fluorescence quenching are expected 

to break down in such situations.

In a previous work20, we proposed a general theoretical 

framework that is relatively rigorous and, nevertheless, com­

putationally viable approach to this complicated problem, 

which is based on a hierarchical system of many-body Smo- 

luchowski equations for the reactant molecules21. The forma­

lism is free of the above mentioned limitations of conven­

tional theories. We then applied the theory to treat the 

steady-state fluorescence quenching kinetics. For the sim­

plest case where the bimolecular quenching occurs only upon 

contact of D* and A moledules and the potential of mean 

force between them has a negligible effect, exact expressions 

were obtained for the steady-state quenching rate coefficient 

and for the ratio of the steady-state fluorescence intensity 

in the absence (Zo) and in the presence (Z) of quencher.

The purpose of the present work is to extend the previous 

treatment20 to the general cases where the bimolecular quen­

ching may also occur via long-range energy transfer proce옹・ 
ses and the potential of mean force is not negligible. We 

obtain some approximate analytic expressions for the steady­

state quenching rate coefficient and for the ratio IQ/I. The 

present theory predicts a complicated nonlinear dependence 

of IQ/I on quencher concentration C旨.The Stem-Volmer 

coefficient Ksv, which is defined by2,14

KSV=GO/I-1)/C1 (1.11)

depends on Ca and the intensity of light that excites the 

fluorophor as well as on other parameters that characterize 

the dynamics of the fluorophor and quencher in a given so­

lution. The approximate analytic results are then compared 

with the exact results obtained from numerical analysis and 

the results obtained from the conventional Smoluchowski 

theory11. It is seen that the conventional theory breaks down 

when the light intensity is very high and when the quencher 

concentration is high.

The Many-Body Smoluchowski 
Equation Approach

In the previous work20, starting from a hierarchical system 

of many-body Smoluchowski equations for the reactant dis­

tribution functions, we were able to show that the time-de­

pendent bimolecular quenching rate coefficient &(£) appea­

ring in the rate law, Eq. (1.6), can be evaluated from the 

following expression:

如4苛S3)Pq・G; t) (2.1)

Here, S(r) is the sink function which describes the rate of 

quenching of a D* molecule when there is an A molecule 

at the separation of r. Pad>(T, 0 is the nonequilibrium pair 

distribution function; i.e., 4苛</尸Wa is the number 

of A molecules located, on average, in a spherical shell of 

thickness dr at a distance r from a D* molecule at time 

t.

We also showed that under irradiation for />0 伽尸化 £) 
evolves in time according to the kinetic equation,

으Pad•(、치; t) =L^a (n t) 一S(/)pmG /)

+F(£)[pwG; /)-p/u>-(r, t)]

(/>0) (2.2)

Here, Ld»a is the Smoluchowski operator for the relative mo­

tion of D* and A and its explicit form is given by

琮4 = ( 으+ 늘 ) 如이으 + P 으%。)] (2.3)

where 如6) is the diffusion coefficient, which depends on 

r if the hydrodynamic interaction between D* and A is to 

be included, and is the potential of mean force. p= 1 

/ksT with the Boltzmann constant 如 and the absolute tem­

perature T. If Uad*(t) has a very steep potential wall at r=a, 

Pad*(K t) must satisfy the reflecting boundary condition,

[■亲一 + 8 ■音「乙"(為 (2.4)

On the other hand, as r goes to infinity, Pad* (r, t) approaces 

unity:

lim peG 0 = 1 (2.5)

The initial condition for Pad*Ck t) that corresponds to usual 

experimental conditions is

PAD*(n 0) = exp[ 一辺疚&)] (2.6)

The kinetic equation fort) in Eq. (22) involves 

another nonequilibrium pair distribution functiont), 

which gives the correlation in the distribution of A and 

ground state D molecules. The kinetic equation governing 
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the evolution of t、) is given by

=Lda Pad(.K PA£»*(^ t)

rn*n
+ [Q]】"s+辰?(f)C旨][psG； O — pAoir, f)]

(t>0) (2.7)

The Smoluchowski operator L^a for the illative motion of 

D and A has the same structure as L^A in Eq. (2.3), and 

the boundary and initial conditions for Pda*(K t) are also 

similar to those for 加尸(為 t、) in Eqs. (2.4)-(2.6).

Eqs. (2.1), (2.2), and (2.7) together with Eq. (1.6) constitute 

the set of integro-differential equations to be solved for the 

four unknowns, LZ)*], kQ(t), PauG; t), and pWN /). We as­

sume that ks, F, and S(r) are known from quantum mechani­

cal caluclations or independent experiments.

However, if the potential of mean force between Z>* and 

A does not differ much from that between D and A [z'e, 

if Uad*(t) = Uad(T)\ the problem can be simplified greatly. 

In such cases, we have

心；f)+ [Z)]pAD(N t) = C脂⑵(尸) (2.8)

where g⑵(尸)is the equilibrium radial distribution function 

between D and A,

#2)(r)= exp[ -^UadW ] = exp[ 一 00做(r) ] (2.9)

With Eq. (2.8), the kinetic equation for Pad*Ck t), Eq. (2.2), 

becomes decoupled from that for Pad(.K /), Eq. (2.7), to 

give

으p心;。=陽|小(為 £)一S(，)pQ.(N t)

+{的淄仞*가 m)—p" oj

(f>0) (2.10)

Hence, only this equation together with Eqs. (1.6) and (2.1) 

has to be solved to obtain reaction kinetic informations. 

Hereafter, we will restrict our discussion to this situation.

Steady-State Fluorescence Quenching Kinetics

When the external radiation which excites the D molecules 

has constant intensity, a steady state is attained at long ti­

mes. For this steady-state, and 8pad* (匕 t)/허=0.

Therefore, the equations we have to solve, i.e. Eqs. (1.6), 

(2.1) and (2.10), become respectively

YM 妨 C旨 (3.1)

编=jdr Sgg⑵G) + 成)]=阕 + 伍 S(r)fs(r) (3.2)

and

[Ys—Z°+S0)]£&) = —S&)g⑵ 0) (3.3)

Here, [£)*1 and 崎 denote the steady-state values of [Z>*] 

and kQ(t), respectively, and the subscript D*A of Ld>a has 

been omitted for the brevity of notation. fs(r) denotes the 

deviation of t) from 魂(,)in the long-time limit. 

Note also that in Eq. (3.2) we introduced the equilibrium 

quenching rate constant 格 with is given by

feg-Jdr S(r)^(2)(r) (3.4)

If the redistribution of reactant molecules by diffusion occurr­

ed rapidly so that the pair distribution between D* and 

A were give by g⑵(r),娜 would be the rate constant for 

the bimolecular quenching process.

Once y” 崎 and fs{f) are determined from Eqs. (3.1)-(3.2), 

the ratio of the steady-state fluorescence intensity in the 

absence (Zo) and in the presence (7) of quencher can be 

calculated from the following equation:

璀나刀♦丄 (C旨=0)/Ks (C腭 0)

= Ys(C旨소))/Ys(e=0)

=1+心沙(如+F) (3.5)

A formal solution to Eq. (3.3) may be written as

£(，)= 一Jdr。Gs(rt ro,為)S&°)g⑵(乙) (3.6)

where the Green's function Gs(r, rQt ys) satisfies the differe­

ntial equation,

[y5-£°(r)+S(r)] Gs(.rt ro, ys)-8(r-ro)/4n^

(3.7)

and the same boundary conditions as those for 人(r), i.e.,

lim Gs(r, ro, Y$)=0 (3.8)
r-»oo u

and

[如(，)( 으+ B g。"*)Gs(N ro, ys)l=o -0 (3.9)

The notation L°(r) in Eq. (3.7) denotes that it operates on 

the variable r. Gs(r, rot ys) can be, in turn, expressed in 

terms of a simpler Green's function:

Gs(r,乙，y$)=GG; ro, Ys)-pn G(r, rb ys)S(ri)Gs(ri, rot ys)

(3.10)

where the reaction-free Green's function G(r, rb ys) governs 

the D*-A pair dynamics in the absence of the energy transfer 

reactions. It satisfies the differential equation.

Lys-L°(r)] G{rt rlt ys) =S(r-ri)/4nr1 (3.11)

and the same boundary condition as G&r, rQt y$).

Contact Quenching

Suppose that the quenching reaction can occur only when 

the Z>* and A molecules are brought into contact. In this 

case the sink function S(r) may by modeled as a delta-func­

tion22:

S(r)= 一一(彩、• 8乎 = k 8(r—a)/^^ (3.12)

where K=Zf§^(2)(a). From Eq. (3.10), we then have

Gs(L ro, y$) = G& ro, y5)-kGU c, ys)G(0, rQf ys)

/[1 + kG(g, a,於)] (3.13)

and from Eq. (3.6)

成)=一娜GG; o, k)/[1 + kG(o, o, ys)l (3.14) 
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Substituting this expression for /(r) in Eq. (3.2), we obtain 

the steady-state quenching rate constant,

妨=가为/[1 + kG(o, o, yJ] (3.15)

which is obviously smaller than the equilibrium rate constant 

阕.Finally, putting this expression for 崎 into Eq. (3.1), we 

obtain an algebraic equation for ys:

Ys=As+F+C験3/[1 + kG(o, o,為)] (3.16)

By solving this equation for ys, we can calculate the steady­

state quenching rate constant from Eq. (3.15) and in turn 

the ratio Io/I from Eq. (3.5).

Hard sphere model with Uad・(『) = O for r>o. For 

simplicity, we assume that the potential of mean force Uad・ 

(r) vanishes but goes to infinity for We also as­

sume that the hydrodynamic interaction between Z>* and A 

is negligible so that constant. In this

simplest case, the Green's function G(r, ys) can be readily 

obtained:

G(r, n, *)=丄{寿[广I _广(宀「的] 
471£>?Ti Za

+ 丁으_形渤+，1-2。)} (3.17)
1 + acr

where a=(ys/D) 1/2. The equation for ys is then given by

Ys=々s+F+C； 燃/[1+鄙為 (l + g/2〃가/2)] (3.18)

where 标三 4noZ>. It was 아lown^ that the root of Eq. (3.18) 

is given by

Ys=X2(必+F+A0C；) (3.19)

Expression for the coefficient X2, which is less than unity, 

is rather complicated and is given by

X2 = 2( -Q)1/2 cos[( © - 2n)/3]-们/3 (3.20)

where

8以=&(一 Q3)T2； Q=(泌 2-拼)/9；

&=( 앗，佔 2—27勿一2防)/54;

缶三一(2+3勿2)； b2= 1+2B(B-A)/C2',

缶三一[0-B)/C]2；

H 쏘뜨 )(쏪); B=】 +뽋)。幣广

ye(f=ks+F+!^CA

X2 depends on F on the quencher concentration Ca a옹 well 

as on other parameters that characterize the dynamics of 

D and in a given solution, and its value approaches unity 

as C旨 T):

y = 1 J (馈/如)1阀/Qs+0] 1 ro
2- 11+(她饥)+ [(必+"矽少了/2 J 5

(when (3.21)

With the expression for ys in Eq. (3.19), the steady-state 

quenching rate constant 照 in Eq. (3.15) is now explicitly 

given by

kS가從八 1+ (k沙知) [1+ (丫夕)%「1} (3.22) 

When this expression for k% is used in Eq. (3.5), the ratio 

Io/I can also be determined. Another expression for Io/I 

can be otained directly from Eq. (3.19) by noting that the 

value of X2 becoms unity as CAO：

"部g))/g = 0)

=X2 [l+"Ws+F)] (3.23)

In the low quencher concentration limit, X2 is given by 

Eq. (3.21) and thus Eq. (3.23) becomes

Io/I=1+K^vG (when C^O) (3.24)

where the infinite dilution Stem-Volmer coefficient Ksv is 

given by

K&= lim (7o/7-l)/G

=(V_____________ k^kD I
ks-^F 丿卩 1+ (k^/kD) + [fe+F)a2/D?/2J

(3.25)

Hard sphere model with Uad'W^O for r>o. We 

now consider the case where the effect of potential of mean 

force is not negligible, i.e. 1岳侦)必 for but the hydro­

dynamic interaction is still negligible, i.e. Jap-W =D= con­

stant. To level off the variation of the Green's function G(.rf 

rb ys) due to the Boltzmann factor exp[ —to some 

extent and to get a differential equation in a simple form, 

we introduce the following transformations23:

g(y 力 s) =-纽끄츠-exp{g[U0)-UOi)과 GO; rb ys)

(3.26)

where y= (〃&) — 1, yy= (rja) — 1 and s= (oVD)ys. The sub­

script AD* of Uad*(” has been omitted for the brevity of 

notation. The differential equation for g(y,兆 s) is given 

by

"一[으 + 卩3)]} 此 无 s)=8(y-^i) (3.27)

where

with

Boundary conditions for g(y,无 s) are

s)=0 (3.28)

[쯩 七響 球

Again, g(y, s) may be expressed in terms of a simpler 

Green's function:

g(y, s) =go(yr s)+J； dy2 go(y, s)V(y2)g(y^ •无 s)

(3.30)

The field-free Green's function go(y, s) satisfies the dif­

ferential equation,
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— 无 s) = S(y-j2) (3.31)

and the same boundary conditions as those for g(y,无 s) 

in Eqs. (3.28) and (3.29). It is almost equivalent to the Green, 

s function in Eq. (3.17):

g。。, >a 矽=淑仏为[-/ \y~y2 I ]-皎[-/履+处)]}

+ $1/2，exp[-/(y+%)] (3.32)

where 传 [i-$ 쬉FL

A formal solution to the integral equation, Eq. (3.30), can 

be obtained by an iterative procedure. We can write

g(y 光 s)= 어)。, 无 s) (3.33)
«=o

where

g岡 3 北 s)=g°(y,无 s')

g어) 3, 无 S)=L £加 g°(y, 处 S)V(，2)g성T)(y, S) for K^l.

What we need is not the complete expression for g(y, 

s) but its value at > = 0:

g(0, s)= s) (3.34)
n=0

with

g⑹(0,无 s)=g°(O, s) = expE-s1Z2yJ/(sV2+T]) (3.35) 

and

g어)(o, 无 $)=j：4yg°(o, y» s) 卩(*)gST)(y, 无 s)

(必) (3.36)

When V(y) is short-ranged, the main contribution to the 

integral in Eq. (3.36) comes from the values of y near zero. 

We may then approximate g어一。。, 如 s) as

g어 T)(y, 无 S)=g어 T)(O, 无 S)

+ |으£心 3 丸 이" (3.37)

The derivative in the second term on the right hand side 

can be related to g어 ° (0, 无 s) by the inner boundary con­

dition to give

[으3, 无 s)L=Wf(0, 无 s) (3.38)

Substitution of Eqs. (3.37) and (3.38) into Eq. (336) yields

gM (o,无 s)三M(S)了g。(0,无 s) (3.39) 

where

C(5)= Jo dygo(0f yt s)7(y)(l+ny) (3.40)

From Eqs. (3.34), (3.35) and (3.39), we therefore obtain

g(Q Jb s) = { £ K(s)]” }g°(0, Jb 5)

M = 0

expL-s1/2jJ ]
_ s1/2+n , —<(s)

if I <(s) I <1, and

(3.41)

G(b, rlf ys) =g( 0, yi, s) ex이 一옹[U(b) — lW}/(4nZ加)

= [4nZ》i(sS + n)(1 — <(s))exp{ 一옹[U(o) — UM]}

X席优一砂勺，打 (3.42)

Finally, putting this expression for G(o, a, y5) into Eq. (3.16), 

we obtain an algebraic equation for ys：

为=血+F+C貌剖 1+物[(4na))g ⑵(°)(sU2+n)(l_«s))]}

(3.43)

By solving this equation numerically, we can in turn calculate 

[Q*丄 from Eq. (3.1) and the ratio Io/I.

Long-Range Energy Transfer

We now consider the case where S(r) contains a long-ran­

ge interaction term SL(r\ that is,

S (r) = KcS(r- o)/4na2 + SL(r) (3.44)

where kc measures the quenching rate at contact radius. 

In this case, the steady-state quenching rate constant in Eq. 

(3.2) can be expressed as

院느 燭+ 阡人 (o) +1 drSL(r)fs(r) (3.45)

fs(r) in Eq. (3.6) is in turn given by

fsM = ~KCg(2)M Gs(r, a,为)

- j dr。Gs3 ro,长)&(乙)g⑵(尸。) (3.46)

If SiG) is not too long-ranged, the integral appearing appea­

ring in Eq. (3.45) may be approximated as follows:

J drSL(r)fs(r)^l d「SG){£(o)+[ 짜？ ]=夕~”이(347)

The boundary condition for fs(r) at r=o gives the rela­

tion

with w

［苓1=。=—侦⑹ (3.48)

=B[으〃M 아=<，
.We can then approximate kq as

妨二기? 3 + (kc+Kl)£(o) (3.49)

where

Kl = Jz/rS£(r)[l— (r~(3.50)

In deriving an expression for the full Green's function 

Gs(r, r。，yD，we isolate the influnce of contact quenching 

by introducing a long-range-interaction-free Greeks function 

Gc(r, n %)，which is a s이ution of differential equation
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[ys-L°(r)4-Kc8(r-o)/4no2]Gc(?; rb ys) =8(r-ri)/4nr?

(3.51) 

and satisfies the same boundary conditions as those for Gs 

in Eqs. (3.8) and (3.9). Gs(r, rQ, 丫$), is then expressed as 

G& ro, Ys) = GcG； ro, Ys) - j dhG& rlt ys)SL(ri)

XGs(方, 尸아 化)= 2 Gsy (n 七, ys) (3.52) 
n = 0

where

G罗ro, Ys)=Gc(Z 尸。，％) (3.53)

and for 刀 >1

G" (r, 尸이 Ys) = -jrfn Gc(r, rh ys)SL(ri)G^~1) (rlt ro, ys)

(3.54)

Again, for &(俨)that is not too long-ranged we make the 

following approximation:

G絆0; ro, ys) =-pn Gc(r, rlt Ys)SG】)

X｛G?i)(a, ro)ys)

+ [ 으 GgTp% ro, Ys) 丄1=°(尸1*나

= —Jd『iGc(N Ys)SGi)[l—&i—b)w]GgT)(b, rQf ys)

(3.55) 

where the second line has been obtained by assuming that 

the boundary condition, Eq. (3.9), holds for Gs at all orders 

of approximation given by the expansion in Eq. (3.52). The 

value of (潛)3 rQt y5) at =o is then given by

G?)(e, ro, Ys)= (-1)차 [£(%)]” Gc(y，r0, ys) (3.56) 

where

«Y$)="mGc(g, n, Ys) (3.57)

Substitution of Eqs. (3.53) and (3.56) into Eq. (3.52) gives 

an expression for Gs(。, r0, y5) in the closed form:

Gs(o, rot Ys)=Gc(6 r0, Ys)/[l + ?(ys)l (3.58) 

迁丨曰，s) I <1.

The long-range-interaction-free Greers function Gc3 r0, 

ys) is given by Eq. (3.13) with k replace by kc and thus

Gc(c rQf 丫D=G(g, ro, Ys)/[1 + kcG(d, a, ys)l (3.59) 

where G(rf ro, ys) is the reaction-free Green's function ob­

tained in the previous subsection, Eqs. (3.17) and (3.42)

First obtaining an expression for fsM from Eqs. (3.46), 

(3.58) and (3.59) and then putting the resulting expression 

into Eq. (3.49), we finally have

妨=嵋一 (kc + kl) X

I Keg⑵(b)G(b, o, 匕)+"/七(；(。, ?■아 為)Sl(尸°)g⑵&。) ?

1 + kU o, ys)+JrfroG(o, ro, Ys)SL(ro)El- (ro -o)vl

(3.60) 

When SL(r) =0, we have kl=0 and Kc 哉母妒)(。), and thu오 

this expression for 为& reduces to that given by Eq. (3.15). 

By solving the nonlinear algebraic equation for ys, obtained 

by substituting the above expression for 展 into Eq. (3.1), we 

can calculate and thus the ratio Io/I.

Relation to the Conventional Smoluchowski App­
roach

In most analyses of experimental data1-8,11, the validity 

of Eq. (1.10) was taken for granted. This gives

标】｛ dt exp[ -kst-G 燃｝，(3.61)

In the conventional Smoluchowski approach11, the time-de­

pendent quenching rate coefficient ^Ss(r) in Eq. (3.61) is 

evaluated by

晞(f)=jdr S(y)pcs3 t) (3.62)

Here, the nonequilibrium pair distribution function pcs 3 

t) is the solution of

으-PcsG, t)=L°(7)Pcs(N 0-5(r)pcs(n /) (3.63)

with the same boundary and initial conditions as given by 

Eqs. (2.4)-(2.6). For the simple case in which S(r) is given 

by Eq. (3.12), 1岳&)=0 for and &尸&)=以+屁* 
=D=constant, one can find an explicit expression for 噬 
0 严 18：

峪(f) =知丄1+ (弗/碇 exp(x안)由:(炉2)] (3.64)

where h호 is the value of 畛 (t) in the long time limit,

k 오 = lim 狀 = 嵋如八岡+如) (3.65)

and x=[l+(娜/佬摂]1가/With the expression for k萼(t) 

in Eq, (3.64), the expression for Zo/7 in Eq, (3.61) can be 

evaluated only numerically. For the infinite dilution Stem- 

Volmer coefficient K즈y, however, an analytic expression can 

be derived18, and found to be identical with Eq. (3.25) if 

(為+F) is replaced by & Deviation of the conventional 

Smoluchowski 산ieory, Eq. (3.16) along with Eq. (3.64), from 

the present theory represented by Eq. (3.5) or Eq. (3.23) 

at higher quencher concentrations will be discussed below 

through numerical calculation.

Nemzek and Ware2 derived an approximate expression for

I。/I by using a long time approximation for 磴(£) in eva­

luating the integral in Eq.(3.61), nam이y,

裾sg시1+ 若 苛沔] (3.66)

The resulting expression for Io/I is

/p —_______ 1+C旨 hg/hs_______  初
I 1—n172^ exp(Q2) erfc^Cl) *

where O = [^/(^ + kD) ] (o2/nD)1/2 (ks+) -1/2. As

幌/瞄 goes to infinity. Eq. (3.66) for 貽(f) becomes exact 

and so does Eq. (3.67) for Io/I. Here, the word "exact" is 

used only in the scope of the conventional Smoluchowski 

theory. For Eq. (3.67) to be really exact, the requirement 

of low light intensity and low quencher concetration should 

also be met. Nevertheless, Eq. (3.67) is most frequently used
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Cg in M
Hgure 1. F dependence of the Stem-Volmer plot when 題 > 

ko.

C? in M
Hgure 흐. F dependence of the Stem-Volmer plot when 咁 = 

ko.

by experimentalists. Expression for K為 corresponding to 

the approximation given by Eq. (3.67) is found to be

路=+쯦쁘』+島萼广｝ (3创)

Rs +F KQ 十粉 D ) J

Model Calculations

Eq. (3.5) shows that the relative intensity of quenched to 

unquenched fluorescence depends on the intensity F of 

steady illumination, as well as on the quencher concentration 

Ca and other parameters that characterize the diffusive dy­

namics of the fluorophor and quencher in a given solution. 

This is an important result since the conventional Smolu­

chowski approach11 makes no reference to the probable de­

pendence of IQ/1 on F.

Figure 1 shows the F dependence of Stern-V이mer plot. 

Model parameters used are those for the fluorescence of 

1,2-benzanthracene quenched by CBr4 in 1,2-propanediol at 

25須；& =々广=3&5 ns, o=9.1 A, Z)=5.0X10-7 cm2s-1 and 

^=6X1O10 lmoLsT = lXl()T° cm^sf In reference 2, 

Nemzek and Ware evaluated these parameters from an anal­

ysis of quenched fluorescence decay data based on the con­

ventional Sm이uchowski theory. However, the light pulse 

used by them to excite fluorophors had a finite width. Thus, 

their analysis may be erroneous due to the failure of the 

assumption, made in the conventional theory, that D* mole­

cules just excited are surrounded by an equilibrium distribu­

tion of quencher molecules. In fact, they found2 that the 

above parameters deduced from fluorescence decay data are 

inconsistent with the curvature observed in the Stern-Volmer 

plots for the same system. Again, their analysis of Stem-Vol­

mer plots was based on the conventional theory. Although 

we feel that a consistent analysis of the time-dependent and 

steady-state fluorescence quenching data within the frame­

work of the present theory is desirable, we are not able 

to carry out the analysis since no information of the intensity 

of illumination is given in any experimental paper on fluores­

cence quenching kinetics. For the present, we just take the 

above values for motional and reaction parameters as the 

reasonable choice for the input to model calculations to illus-

Logio(F/ks)

Figure 3. Dependence of the infinite dilution Stern-Volmer co­

efficient Ksv on the ratio of F to fes­

trate the implications of the present theory.

As the light intensity decreases ", F/ks-^G), the Stern- 

Volmer curve approaches an asymptote. In Figure 1, this 

asymptotic curve is almost identical with the dashed curve 

for the case with 0.001 ks. On the other hand, as F in­

creases, the Stern-Volmer curve approaches the horizaontal 

line, Only when FVhs and in the low quencher

concentration limit, the conventional Smoluchowski result11, 

represented by the solid curve in Figure 1, coincides with 

the present theory. When compared to the experimental 

Stem-Volmer plot reported in reference 2, it is seen that 

the curve predicted by the present theory for the case with

0.001 ks shows a little better agreement than the curve 

predicted by the conventional Smoluchowski theory. How­

ever, this observation is merely provisional, since the magni­

tude of F is unknown and also the parameter values deduced 

from quenched fluorescence decay data may be inaccurate.

Figure 1 applies to the case when the equilibrium quen­

ching rate constant 擬 is much larger than the diffusion-li­

mited rate constant 貽 When 擬 is comparable to kDt we 

find that the discrepancy between the conventional and pre-
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以in M
Figure 4. Variation of the Stern-Volmer plot with the ratio of 

kD to 燧.

sent theories is not discernible for the whole range of Ca 

as long as the light intensity is kept low. Figure 2 shows 

this trend. Here, the value of 擬 has been set equal to 如 

but other parameters are the same as in Figure 1.

In Figure 3, we display the dependence of the infinite 

dilution Stern-Volmer coefficient K為,as given by Eq. (3.25), 

on the ratio F/ks- We have used the same values for the 

parameters r0, o, Dt and 端 as in Figure 1. As F goes to 

zero, the value of Ksv approaches a limiting value which 

coincides with the prediction of the conventional Smoluchow- 

ski theory. On the other hand, as F increases Ksv dec­

reases and eventually becomes unity for very large values 

of F.

Figure 4 shows that the quenching effect becomes more 

pronounced as the diffusive encounter rate of D* and A in­

creases. We used the same values for the parameters to, 

u, and 燭 as in Figure 1, but changed the value of D such 

that kD has the value ranging from 0.001 蠅 to 0.1 燭.We 

fixed the value of F at 0.001 ks.

Figure 5 displays the effect of an attractive Coulomb force 

on the quenching dynamics. Except that the potential of 

mean force U(r) is now given by

U(r)—kBT(rc/r) for r>o (4.1)

with rc~ZAZDe2/EkBT~ —5.0 A (乙* and Z滨 are charges on 

A and D molecules, respectively, and e is the dielectric con­

stant of the solvent), other parameters have the same values 

as in Figure 1. In Figure 5(a) F= 0.001 ks, while in Figure 

5(b) F=ks. The solid curves are exact results obtained by 

s이ving Eqs. (3.1)-(3.3) numerically. Approximate analytic re­

sults based on Eq. (3.43) are represented by dot-dashed cur­

ves, which can be hardly distinguished from the exact resu­

lts. The "effective-radius” results, represented by the dashed 

curves, were calculated from the potential-free equation for 

Io/I Eq. (3.23)] but with the contanct radius c replaced 

by an effective value for the reaction radius11:

财=rcE(l + exp(rc/o) 一 口 一' (4.2)

As expected, the attractive force between A and Z>* molecu­

les amplifies the quenching effect. An opposite effect is found 

for the repulsive interaction.

C； in M

C； in M
Figure 5. Effects of an attractive Coulomb potential on the 

Stern-V시mer plot. F= 0.001 ks for Figure 5(a) and for 

Figure 5(b).

Effects of long-range energy transfer are shown in Figures 

6(a) and 6(b). We assume that the long-range energy transfer 

occurs via the dipole-dipole interaction mechanism24 so that 

Sl(t) in Eq. (3.44) is given by

S心)=寫3〃)6 (4.3)

where Ro is the critical separation for which energy transfer 

from D* to A and unimolecular decary of D* are equally 

probable. We set the value of 2?o e아ual to 20 A. Again, we 

assumed that t7(r)=0 for r>o and other parameters used 

are the smae as in Figure 1. In Figure 6(a) F= 0.001 ks, 

while in Figure 6(b) F=b手 The solid curves are exact results 

obtained by solving Eqs. (3.1)-(3.3) numerically. Approximate 

analytic results based on Eq. (3.60) are represented by dot- 

dashed curves, which deviate much from the exact results. 

However, the “effective-radius” results, which were calcula­

ted from Eq. (3.23) but with the contact radius o replaced 

by an effective reaction radius 财"，

3摆씋湍唧 由(，4)

三0.676(&加。严人。｛1 + 1.414exp[-碍《庆。) 마
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Cg in 서 C° in M

Cg in M
Hgure 6. Effects of a long-range energy transfer on the Stern- 

V시mer plot. 0.001 ks for Figure 6(a) and F=ks for Figure 

6(b).

eg in M
Figure 7. Combined effects of an attractive Coulomb potential 

and a long-range energy transfer on the Stem-Volmer plot. F 

= 0.001 ks for Figure 7(a) and F=ks for Figure 7(b).

are again in relatively good agreement with the exact results. 

Here, zQ — { 1/2) (I^/Dvo) 1/2o -2, r(£)is the gamma function, 

and Kv⑵ and Zv(z) are the modified Bessel functions of 

order v25. It can be seen that the additional long-range en­

ergy transfer increases the quenching effect.

Finally, the combined effects of long-range energy transfer 

and attractive Coulomb potential are displayed in Figures 

7(a) and 7(b). The long-range sink function &(,) is again 
assumed to be given by Eq. (4.3) with 7?0 =20 A, and the 

Coulomb potential is given by Eq. (4.1) with rc— —5.0 A. 

All other parameters have the same values as in Figure 1. 

In Figure 7(a) 0.001 ks, while in Figure 7(b) F=R» Again,

approximate analytic results based on Eq, (3.60) deviate 

much from the exact numerical results. Even the **effective- 

radius" results calculated from Eq. (3.23) with % given 

by

财=rcL(l + 4m辨3)exp0，°Z)— 匸11

/戒=0.676(磴么无。)旳시1+1.414 exp[ —矽(庆"2矿마

(4.5) 

are not in good agreement with the exact results.

Concluding Remarks

We have applied the theory developed in a previous work20 

to investigate the effects of potential of mean force and long- 

range energy transfer processes. The present theory predicts 

a rather complicated nonlinear dependence of Io /I (the rela­

tive intensity of unquenched to quenched fluorescence) on 

the quencher concentration Ca> Effects of the potential of 

mean force on the quenching dynamics are evaluated to a 

good accuracy by an approximate analytic equation, namely, 

by Eq. (3.43). However, the approximate analytic formula for 

evaluating the effects of long-range energy transfer proces­

ses, given by Eq. (3.60), appears less helpful. Instead, ad 

hoc approximations, based on what we call ** effective-radius" 

formulas, Eqs. (4.4) and (4.5), offer more accurate estima­

tions. Since even the full numerical calculation that solves 

Eqs. (3.1)-(3.3) directly is found to be not too demanding, 

it is recommended in preference to either of the approximate 

analytic procedures when the effects of long-range energy 

transfer are to be evaluated. An important aspect of the pre­

sent theory is that it describes the dependence of fluores­

cence quenching dynamics on the intensity of external illu­
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mination. The conventional Smoluchowski approaches11 are 

mute in this respect; it has been simply assumed that the 

intensity of illumination should be quite weak. Hence the 

validity of the present theory may be tested by a fluores­

cence quenching experiment under intense illumination.
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Global and local momory functions, defined by Quack 죠nd Troef were calculated for the rotationally inelastic collision 

of O+SO0 ;)->[O-S-O]^-O+SO(i>, f). It is seen to decrease steadily as total energy increases. Distribution of 

scattering cross section over product rotational states also shows the decreasing memory of initial state as tot끼 

energy is increased. These results are interpreted in terms of energy scrambling 죠t high energy due to the availability 

of more phase space and also the influence of strong dynamical constraints.

Introduction

It is possible to calculate detailed state-to-state scattering 

cross sections for the reactions involving strongly coupled 

intermediate collision complexes using several well-formula­

ted statistical theoreisu and the product state distributions 

for these kinds of collisions can be predicted reasonably well 

for some cases. Such complexes can be formed only over 

a deep potential well. Many neutral atom-diatom collisions 

are direct in nature. However a bimolecular reaction between 

two radical fragments of a stable triatomic molecule is known 

to proceed through intermediate collision complex3,4, which 

is none other than highly vibrationally excited (over the dis­

sociation limit) triatomic m이ecule. Therefore it would be 

very useful for the understanding of the reaction dynamics 

of a system involving the strong coupled collision complex 

if one could interpret the product state distribution in terms 

of the degree to which the initial states retain the momory 

of initial quantum states. This memory is closely related to 

the problem of redistribution of internal energy initially ac­

quired in specific degrees of freedom5. The product state 

distribution, which is usually what is observed experimental­

ly, can be related to the degree of ergodic state mixing that 

happens extensively in the strong coupling region of the 

complex.6.

Even though the actual dynamics of the complex collision


