• 제목/요약/키워드: steady-flow effect

검색결과 464건 처리시간 0.027초

Effect of Venturi System on Acceleration of Low-speed Water Flow at the Venturi Throat Installed at the Inlet of Hydro Turbine

  • Jung, Sang-Hoon;Seo, In-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.914-920
    • /
    • 2011
  • For a hydro turbine electricity generation system in river or bay, a venturi system could be applied to accelerate flow speed at the inlet of the turbine system in a flow field. In this study, a steady flow simulation was conducted to understand the effect of venturi system on the acceleration of current speed at the inlet of a hydro turbine system. According to the continuity equation, the flow speed is inversely proportional to the cross-section area in a conduit flow; however, it would be different in an open region because the venturi system would be an obstruction in the flow region. As the throat area is 1/5 of the inlet area of the venturi, the flow velocity is accelerated up to 2.1 times of the inlet velocity. It is understood that the venturi system placed in an open flow region gives resistance to the upcoming flow and disperses the flow energy around the venturi system. The result of the study should be very important information for an optimum design of a hydro turbine electricity generation system.

Numerical Prediction of Open Water Performance of Flapped Rudders

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • 제4권1호
    • /
    • pp.1-10
    • /
    • 2000
  • A low-order potential based boundary element method is applied for the prediction of the performance of flapped rudders as well as all-movable rudders in steady inflow. In order to obtain a reasonable solution at large angles of attack, the location of the trailing wake sheet is determined by aligning freely with the local flow. The effect of the wake sheet roll-up is also included with use of a high order panel method. The flow in the gap of a flapped rudder is modeled as Couette flow and its effect is introduced into the kinematic boundary conditions for flux at both the inlet and the outlet of the gap. In order to validate the present method, the method is applied for a series of rudders and the computational results on forces and moments are compared with experimental data. The effect of the gap size on the forces and moments is also presented.

  • PDF

증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측 (PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS)

  • 김유진;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

SORET AND CHEMICAL REACTION EFFECTS ON THE RADIATIVE MHD FLOW FROM AN INFINITE VERTICAL POROUS PLATE

  • MALAPATI, VENKATESWARLU;DASARI, VENKATA LAKSHMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권1호
    • /
    • pp.39-61
    • /
    • 2017
  • In this present article, we analyzed the heat and mass transfer characteristics of the nonlinear unsteady radiative MHD flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate under the influence of Soret and chemical reaction effects. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Based on the flow nature, the dimensionless flow governing equations are resolved to harmonic and non harmonic parts. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. Parametric study of the solutions are conducted and discussed.

다중-익형 주위 유동장 및 양력-향상 탭의 영향에 대한 수치적 연구 (Numerical Study on the Flow Field about Multi-element Airfoils and the Effect of the Lift-enhancing Tabs)

  • 박인철;장석;이득영;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.331-336
    • /
    • 2011
  • The flow fields over multi-element airfoils with lift-enhancing flat-plate tabs were numerically investigated. Common choice of the height of the lift-enhancing tabs usually ranges from 0.25% to 1.25% of the reference airfoil chord, and in this study the effect of the position of the tab with l%-chord height was studied by varying the distance of the tab from the trailing edge ranging from 0.5% to 2% of the reference chord. In this paper, the effects of lift-enhancing tabs with various position were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Computed streamlines show that the additional turning caused by the tab reduces the amount of separated flow on the flap.

  • PDF

원자로 외벽냉각시 원자로공동에서의 자연순환 이상유동에 대한 수치적 연구 (A Numerical Study on the Two-Phase Natural Circulation Flow in Reactor Cavity under External Vessel Cooling)

  • 김홍민;서준우;김광용;박래준;하광순;김상백
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.781-785
    • /
    • 2003
  • This work presents a numerical analysis of two-phase natural circulation flow in reactor cavity under external vessel cooling. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations for multiphase flows with zero equation turbulence model are solved to predict the shear key effect on the circulation rate of cooling water and the distribution of void fraction according to the different mass flow of inlet air. Results show that shear key has a positive effect on the circulation rate of cooling water and induce a local increase of void fraction below the shear key, but not remarkably.

  • PDF

노즐-디류저 내에서의 저 Reynolds수 해독특성 해석 (Analysis of Low Reynolds Number Flow in Nozzle and Diffuser)

  • 송귀은;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2672-2677
    • /
    • 2007
  • An investigation of low Reynolds number flow in nozzles and diffusers which are widely used in the valveless micropump is presented. Flow characteristics in the nozzle and diffuser are explained in view of viscous effect and flow oscillation induced by pumping membrane. These calculation results show that the rectification property of valveless micropump is due to a flow separation in the diffuser and the separation is largely originated from the flow oscillation. Under the assumptions of steady flow velocity profile and flow separation in the diffuser, simplified analytical models are provided to see the dependency of rectification on the micropump geometry. Geometric parameters of channel length, nozzle throat, chamber size, and converging/diverging angle are depicted through the analytical models in low Reynolds number flow, and the prediction and experimental results are compared. This theoretical study can be used to determine the optimum geometry of valveless micropump.

  • PDF

입구 비 균일 유동이 원심압축기의 정상 및 비정상 성능에 미치는 영향 (The Effect of Inlet Distorted Flow on Steady and Unsteady Performance of a Centrifugal Compressor)

  • 강신형;박재형
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.971-978
    • /
    • 2005
  • Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed and at the lower flow rate for high speed. For 50,000 rpm stall occurrs as the flow rate decreases, however disappears fur the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases.

원추 환형링이 촉매변환기내의 유동분포에 미치는 영향 (An Effect of Cone Type Circular Ring on the Flow Distribution in Catalytic Converter)

  • 이철구;이은호;유재석;목재균;황석렬
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.76-83
    • /
    • 2001
  • An experimental investigation has been performed on the steady flow in exhaust system. When individual flow coming from exhaust manifold entered UCC, the inlet conditions at entry to the diffuser in UCC were affected by the upstream pipe and manifold works. But those effects of the inlet condition on flow through monolith are negligible because the flows are concentrated on the center of monolith regardless of inlet flow distribution. To improve the flow distribution, we installed the cone type circular ring in diffuser of UCC. This led to increasement of flow uniformity, but there was minor increment of pressure drop.

  • PDF