• Title/Summary/Keyword: steady state distribution

Search Result 488, Processing Time 0.025 seconds

Non-Steady Elastohydrodynamic Lubrication Analysis on the Cam-Roller of Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 비정상상태 탄성유체윤활해석)

  • 구영필;강민호;이득우;조용주
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.201-207
    • /
    • 2000
  • The numerical procedure to analyze a non-steady 3-dimensional elastohydrodynamic lubrication on the cyclically loaded contact has been newly developed. The procedure was applied on the cam-roller contact of the valve mechanism for the marine diesel engine. Both the pressure distribution and the film thickness between the cam and roller follower were calculated for each time step of the whole cycle. The pressure spike is shown at the outlet of the roller edge and it is getting higher as the external load is increased. The film thicknesses in the result of the non-steady analysis have a tendency to increase compared to those in the result of the analysis with the assumption of steady state. Therefore, the surface roughness of the non-steady contact need not be limited below that of the steady contact of the equivalent operating conditions.

An Analysis of Road Shop in Main Fashion Trade Areas in Seoul: Based on Trends in 2007-2014 (서울 주요 패션상권의 가두점 분포 현황 분석: 2007-2014년의 변화추이를 중심으로)

  • Jang, Eunyoung
    • Journal of Fashion Business
    • /
    • v.19 no.1
    • /
    • pp.34-46
    • /
    • 2015
  • The purpose of this study was to investigate the distribution state of road shops around the 9 main fashion trade areas in Seoul, and to analyze whether there were any differences in them based on clothing, store types and regions. Furthermore, by investigating the distribution state of road shops in the 9 main fashion trade areas per year, this study provides basic information that can be helpful in opening and securing road shops in major trade areas. The method of investigation was to analyze clothing types and store types with 72 maps of commercial areas. Samsungdesignnet investigated these areas for 8 years around the 9 main fashion trade areas (Garosugil, Gangnam nonhyun, Gangnam Station, Myungdong, Moonjung, Apgujung, Yeonsinne, Edae, and Chungdam). As a result, the distribution state of the fashion road shops based on clothing types revealed that road shops for ladies' wear, bag or shoes, and total fashion were strong, and the distribution state of non brand were strong. When it came to year-to-year trends, road shops for women's wear, bag or shoes, and total fashion showed a steady increasing tendency of being on-trend, but casuals and underwear showed a falling tendency of being on-trend. In terms of store type distribution, non-brand shops showed the most remarkable growth, followed by multi-shop while total fashion store showed a steady growth. Also, when it came to regional distribution, the dominant trade areas were different based on clothing type. Garosugil showed the widest variation in its yearly trend investigation, and Gangnam station also showed a substantial amount of growth. In other areas, there was no considerable change in the total number of shops, but increasing and decreasing markets had a complexity that depended on clothing types.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

Load distribution analysis of a sprocket wheel tooth for a low head hydro-turbine power transmission system (저낙차용 수차의 동력전달 스프로켓 휠 이의 하중분포 해석)

  • 강용석;김현수;김현진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1087-1095
    • /
    • 1994
  • Chain drive power transmission system was developed for a low head hydro-turbine which generates power by energy transformation on the turbine blades attached to chains. Also, experimental and theoretical analysis for the sprocket wheel tooth load distribution were performed. The tooth load was measured by the specially designed load sensor. It was found that the tooth load distribution for the steady state operation was in good accordance with the quasi-static state results showing the peak load at the final meshing tooth. The trend of the experimental results agreed with the theoretical results based on the spring model analysis and difference in the magnitude of the maximum tooth load was considered to be the effect of the variable spring constant due to the moving contact point between the roller and sprocket wheel tooth.

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

A Two-Dimensional Analysis of Heat Transfer and Flow in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지의 2차원 열전달 및 유동 해석)

  • Jeong, Hye-Mi;Yang, Ji-Hye;Koo, Ja-Ye;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.995-1000
    • /
    • 2001
  • Distributions of the parameters in proton exchange membrane fuel cell (PEMFC) has been analyzed numerically under steady-state and isothermal conditions. The distributions of the crucial parameters (e.g., temperature and pressure) in a PEMFC have a major impact on its safe and efficient operation. This paper predicts the performance of the model electrode plates by calculating the pressure and temperature distributions of working fluid. The calculated results of pressure and temperature at exit condition shows good agreement to experiments and gives details of flow pattern inside of electrode plates.

  • PDF

Numerical Analysis of Ventilation Effectiveness using Turbulent Airflow Modeling (난류유동해석을 통한 환기효율의 수치해석적 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-262
    • /
    • 1992
  • A numerical procedure is introduced to calculate local ventilation effectiveness using the definitions of local decay rate and local mean age. A low Reynolds number $k-{\varepsilon}$ model is implemented to calculate steady state turbulent velocity distributions, and a step-down method is used to calculate transient concentration distributions. Simulations are carried out for several different values of air change rates and several different diffuser angles in a two-dimensional model of a half scale office room. The results show that the local ventilation effectiveness within a room could vary significantly from one location to another. The nominal air change rate based on the assumption of complete mixing of room air does not provide the local ventilation effectiveness information. It is numerically proved that the local mean age distribution obtained from the transient calculation is equivalent to the steady state concentration distribution with homogeneously distributed contaminant sources.

  • PDF

Study of Lower Hybrid Current Drive for the Demonstration Reactor

  • Molavi-Choobini, Ali Asghar;Naghidokht, Ahmad;Karami, Zahra
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.711-718
    • /
    • 2016
  • Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle (고속 스핀들용 공기 베어링의 열 특성에 관한 연구)

  • 이득우;이종렬;김보언;안지훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF