• Title/Summary/Keyword: steady state condition

Search Result 678, Processing Time 0.035 seconds

Feasibility of Streaming Potential Signal on Estimation of Solute Transport Characteristics

  • Kabir, Mohammad Lutful;Ji, Sung- Hoon;Lee, Jin-Yong;Koh, Yong- Kwon
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권2호
    • /
    • pp.41-46
    • /
    • 2015
  • The drag of the excess charge in an electrical double layer at the solid fluid interface due to water flow induces the streaming current, i.e., the streaming potential (SP). Here we introduce a sandbox experiment to study this hydroelectric coupling in case of a tracer test. An acrylic tank was filled up with homogeneous sand as a sand aquifer, and the upstream and downstream reservoirs were connected to the sand aquifer to control the hydraulic gradient. Under a steady-state water flow condition, a tracer test was performed in the sandbox with the help of peristaltic pump, and tracer samples were collected from the same interval of five screened wells in the sandbox. During the tracer test, SP signals resulting from the distribution of 20 nonpolarizable electrodes were measured at the top of the tank by a multichannel meter. The results showed that there were changes in the observed SP after injection of tracer, which indicated that the SP was likely to be related to the solute transport.

Analysis of alpha modes in multigroup diffusion

  • Sanchez, Richard;Tomatis, Daniele;Zmijarevic, Igor;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1259-1268
    • /
    • 2017
  • The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention to the theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue and eigenflux clustering is investigated here without the simplification of a unique fissile isotope or a single emission spectrum. A discussion about the negative decay constants of the neutron precursors concentrations as potential eigenvalues is provided. An in-hour equation is derived by a perturbation approach recurring to the steady state adjoint and direct eigenvalue problems of the effective multiplication factor and is used to suggest proper detection criteria of flux clustering. In spite of the prior work, the in-hour equation results give a necessary and sufficient condition for the existence of the eigenvalue-eigenvector pair. A simplified asymptotic analysis is used to predict bands of accumulation of eigenvalues close to the negative decay constants of the precursors concentrations. The resolution of the problem in one-dimensional heterogeneous problems shows numerical evidence of the predicted clustering occurrences and also confirms previous theoretical analysis and numerical results.

횡동요에 기인하는 전복에 대한 1-자유도계 모형의 이론해석 (Theoretical Analysis at One Degree-at-Freedom Model for Rolling at Ships with Focus on Capsize)

  • 이승준
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.22-31
    • /
    • 2006
  • Recent studies have shown that the short time solution of the equation of motion for the rolling of ships is important in deciding the possibility of capsize of ships due to the excessive heel. Since most of known solutions for nonlinear equations of motion are long time or steady periodic solutions, here a simple way is described to get the short time solutions of the Duffing equation, which was chosen for deriving a criterion for the capsize of the ship. With the small external rolling moment, we first assume the state of the small damping and near resonance. Then, for cases when the frequency of the external moment is higher than the resonant one, an inequality was derived as a criterion for the capsize. This gives the range of the initial condition and the magnitude of the external moment which should be avoided for a ship to be safe from capsize. Furthermore, from the linearized equation, it is also shown that a simple and self-explanatory solution can be obtained consistent with that for the case of no damping, which yields the well-known linear growth with time.

태양열 집열기 기능을 갖는 BIPV 시스템의 응용 (Application of BIPV System Functioned as Solar Collector)

  • 민성혜;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.953-958
    • /
    • 2006
  • Perimeter zone has been reinforced by active systems, such as fan-coil units, because it causes an increase in heating and cooling loads, dew condensation in winter, or discomfort with cold-draft to residents in buildings, through poor insulation by light-weighed skin due to progressing multi-storied buildings and skyscrapers. However, because these active systems raise Its capacity so that fossil fuel is used as much as they are added, and ultimately, greenhouse effect is urged, we proposed BIPV system functioned as solar collector which can substitute active system. As an early stage, heat balance equation in steady-state by Fortran was used not only for pre-heating effect and electric power capacity during the day in winter, but also for electric power capacity during day in slimmer and sky radiation effect during night in summer. Especially, we should have considered shading on PV, since even a little bit of it makes the efficiency too low for the PV to work. Still, when the flux of pre-heated air was increased to make air-barrier, its temperature was not enough to make it because the speed of heat exchange was too fast to warm up the air, thus the capacity to meet the condition was evaluated, and electric power from PV was made used for it.

  • PDF

연소로의 화염분포가 보일러 관로에 미치는 영향에 관한 연구 (A Study on the Imfluence of the Pipe Line of Boiler for Flame Distribution of Combustion Furnace)

  • 조동현
    • 수산해양교육연구
    • /
    • 제26권6호
    • /
    • pp.1435-1441
    • /
    • 2014
  • The fire took place in the synthetic heat transfer fluid boiler used in production process of medium density fiberboard. This study investigated pressure distribution of the first, second and third passes and the temperature in the fire burner. The boiler's internal fluid is unsteady due to the out of order inverter. As the operation continues, the flame's flow and speed are unsteady. The synthetic heat transfer fluid leak spouted about 120kg/min in the form of vapor in the early period of the fire. The flame extended to the second and third passes. The highest temperature of the second and third pass is $1059^{\circ}C$ and $1007^{\circ}C$, respectively. The synthetic heat transfer fluid spouted through the cracked part of the fire box in the first pass and accumulated on the turn table. Therefore, it is expected that the temperature of the interior of the fire box is above $1200^{\circ}C$. The temperature of the burner rises to a maximum level several times in a short period. On account of that, several explosions occur in the fire burner. Pressure distribution at steady state in combustion furnace is 2~5mAq and pressure distribution at inverter under fault condition in combustion furnace is 10~-53mAq. The decrement of coil thickness measurement for synthetic heat transfer fluid boiler is 0~5mm.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

Transient safety analysis of M2LFR-1000 reactor using ATHLET

  • Shen, Chong;Zhang, Xilin;Wang, Chi;Cao, Liankai;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.116-124
    • /
    • 2019
  • $M^2LFR-1000$ is a medium-power modular lead-cooled fast reactor, developed by University of Science and Technology of China (USTC), aiming at achieving a reactor design fulfilling the Gen IV nuclear system requirements and meanwhile emphasizing the optimum safety and economics. In order to evaluate the safety performance of $M^2LFR-1000$ reactor core, three typical transients are selected from initiating events, which are unprotected transient overpower (UTOP), unprotected loss of offsite power (ULOHS+ULOF) and increase of feedwater flowrate with primary pumps trip (IFW+PLOF). These three transients presented and discussed in this paper are performed with the code Analysis of THermal-hydraulics of LEaks and Transients (ATHLET), which is developed by Gesellschaft $f{\ddot{u}}r$ Anlagen-und Reaktorsicherheit gGmbH (GRS). The results indicate that the $M^2LFR$ is safe enough under these three transients due to the good inherent safety features of the reactor, without human intervention, the reactor will reach a new steady state under UTOP condition.

New Thyristor Based ESD Protection Devices with High Holding Voltages for On-Chip ESD Protection Circuits

  • Hwang, Suen-Ki;Cheong, Ha-Young
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.150-154
    • /
    • 2019
  • In the design of semiconductor integrated circuits, ESD is one of the important issues related to product quality improvement and reliability. In particular, as the process progresses and the thickness of the gate oxide film decreases, ESD is recognized as an important problem of integrated circuit design. Many ESD protection circuits have been studied to solve such ESD problems. In addition, the proposed device can modify the existing SCR structure without adding external circuit to effectively protect the gate oxide of the internal circuit by low trigger voltage, and prevent the undesired latch-up phenomenon in the steady state with high holding voltage. In this paper, SCR-based novel ESD(Electro-Static Discharge) device with the high holding voltage has been proposed. The proposed device has the lower triggering voltage without an external trigger circuitry and the high holding voltage to prevent latch-up phenomenon during the normal condition. Using TCAD simulation results, not only the design factors that influence the holding voltage, but also comparison of conventional ESD protection device(ggNMOS, SCR), are explained. The proposed device was fabricated using 0.35um BCD process and was measured electrical characteristic and robustness. In the result, the proposed device has triggering voltage of 13.1V and holding voltage of 11.4V and HBM 5kV, MM 250V ESD robustness.

Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

  • Kim, Huiyung;Moon, Jeongmin;Hong, Dongjin;Cha, Euiyoung;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1796-1809
    • /
    • 2021
  • The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.