• Title/Summary/Keyword: steady state condition

Search Result 678, Processing Time 0.035 seconds

Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers

  • Qin, Qi-Feng;Dai, Yong-Qiang;Yi, Kai;Zhang, Li;Ryu, Seung-Kon;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2010
  • PAN precursor fibers were produced via wet-spinning process, and effects of polymerization and spinning processes, especially the stretching process, were investigated on mechanical properties and micro-morphologies of precursor fibers. An increase in molecular weight, dope solid and densification and a decrease in surface defects were possible by controlling polymerization temperature, the number of heating rollers for densification and the jet stretch ratio, which improved the mechanical properties of precursor fibers. The curves for strength, modulus, tensile power and diameter as a function of stretch ratio can be divided into three stages: steady change area, little change area and sudden change area. With the increase of stretch ratio, the fiber diameter became smaller, the degree of crystallization increased and the structure of precursor fibers became compact and homogeneous, which resulted in the increase of strength, modulus and tensile power of precursor fibers. Empirical relationship between fiber strength and stretch ratio was studied by using the sub-cluster statistical theory. It was successfully predicted when the strengths were 0.8 GPa and 1.0 GPa under a certain technical condition, the corresponding stretch ratio of the fiber were 11.16 and 12.83 respectively.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

The extinction of unsteady counterflow diffusion flame without the retardation effect of a mixing layer (혼합층의 지연효과를 배제한 비정상 대향류 확산 화염의 소화)

  • Lee, Uen-Do;Oh, Kwang-Chul;Lee, Ki-Ho;Lee, Chun-Bum;Lee, Eui-Ju;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.93-101
    • /
    • 2003
  • The extinction of unsteady diffusion flame was experimentally studied in an opposing jet counterflow burner using diluted methane. The stabilized flame was perturbed by linearly varying velocity change that was generated by pistons installed on both sides of the air and fuel stream. As the results, the extinction of unsteady flame is dependent not only on the history of unsteadiness, but also on the initial condition. We found that there are several unsteady effects on the flame extinction. First, the extinction strain rates of unsteady cases are extended well beyond steady state extinction limits. Second, as the slope of the strain rate change increases, the unsteady extinction strain rate becomes larger. Third, the extension of unsteady extinction strain rate becomes smaller as the initial strain rate increases. We also found that the extension of the extinction limit mainly results from the unsteady response of the reaction zone because there is no retardation effect of a mixing layer for our experimental condition.

  • PDF

A Development of Sound Quality Index of an Intake and Exhaust System for High Quality Improvement of Luxury Vehicles (차량 고급감 향상을 위한 흡배기계 음질지수 개발)

  • Lee, Jong-Kyu;Cho, Teock-Hyeong;Seo, Dae-Won;Lim, Yun-Soo;Won, Kwang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • In this paper, a sound quality indices for the evaluation of vehicle intake and exhaust noise were developed through a correlation analysis of objective measurement data and subjective evaluation data. At first, intake and exhaust orifice noise were measured at the wide-open throttle sweep condition. And then, acoustic transfer function between intake orifice noise and interior noise at the steady state condition was measured. Also, acoustic transfer function for exhaust system was measured as the same method. Simultaneously, subjective evaluation was carried out by the paired comparison and semantic differential method by 27 engineers. Next, the correlation analysis between the psycho-acoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding sound quality index for the intake and exhaust noise was obtained from the multiple factor regression method. At last, the effectiveness of the proposed index was investigated.

A Numerical Study on the Maneuverability of a Twin-Screw LNG Carrier under Single Propeller Failure (쌍축 추진 LNG선의 단독 추진기 고장 상태에서의 조종성능에 대한 수치적 연구)

  • You, Youngjun;Choi, Jinwoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.204-214
    • /
    • 2017
  • Recently, ship owners have been requiring the assessment of the maneuverability of a twin-screw ship under machinery failures. In this paper, we are only focused on the propulsion failure among propulsion failure, power supply failure, steering system failure etc. First of all, the mathematical model for the twin-screw 174K LNGC is verified by comparing the simulated results for $35^{\circ}$ turning test, $10^{\circ}/10^{\circ}$ zigzag test and $20^{\circ}/20^{\circ}$ zigzag test under normal operating condition and those obtained from free running model tests. And, sea trial results of 216K LNGC under single propeller failure are compared with those of 174K LNGC under identical condition to verify the proposed method to predict maneuverability under single propeller failure. After the straight line maneuver is simulated under the single propeller failure, the speed and equilibrated heading and rudder deflection angles at steady state are predicted. After the IMO maneuvering tests are simulated under the single propeller failure, the results are reviewed to investigate the maneuvering characteristics due to the failure.

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

Analysis of Resonance for Drive-train in Wind Turbine (풍력발전기 드라이브트레인 공진 해석)

  • Leem, Sang-Hyuck;Park, Sun-Ho;Bang, Jo-Hyug;Chung, Chin-Wha;Ryu, Ji-Yune
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • This study investigated the problems in current practice of drive-train resonance analysis procedure and suggested solutions. The first problem is the resonance occurrence at the un-identified resonance point by the current practice, as for a solution the force spectrum analysis for each critical force transmitting component was suggested. The second one is the inaccurate estimation of potential resonance point in eigenfrequency analysis because of the non-consideration about the eigenfrequency dependency on rotor-speed, the fine linearization at each rotor speed point all over operational range was proposed to account for the affection. Lastly the insufficient time for resonance activation under run-up simulation condition was recognized as a problem in resonance load increasing analysis, as an alternative, steady state condition was suggested to estimate the maximum load increasing level.

Anaerobic Digestion of Pig Manure and Night Soil Mixed Waste in a Normal Temperature (I) (常溫에서 豚 . 人糞混合廢棄物의 嫌氣性處理(I))

  • Kim, Nam-Cheon;Min, Dal-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.63-71
    • /
    • 1988
  • This study is an experimental research on the anaerobic digestion of pig manure and night soil mixed waste at room temperature (25$\circ$C), and the results are shown below: 1. The steady-state condition based on gas production as digestion temperature dropped to 25$\circ$C from 35$\circ$C was achieved at around 28, 47, 56, 64 days respectively when its hydraulic retention time(HRT) are 10, 20, 30, 40 days. 2, Alkalinity and volatile acid(VA) was increased as increasing the organic loading. 3. Removal efficiency of chemical oxygen demand(COD) and biochemical oxygen demand (BOD) was improved as longer HRT, and generally COD value is lower and BOD value is higher relatively. 4. Overall treatment efficiencies of mixed waste are higher than of pig manure and of night soft. 5. Organic removal efficiency at room temperature (25$\circ$C) is 20-25% lower at medium temperature (35$\circ$C) in a same VS loading condition. 6. Refractory fraction of the infiuent VS and organic removal rate constant(K) estimated at around 37% and 0.107/day respectively.

  • PDF

A Measurement of Temperature by TLC without Contact and A Study of Thermocapillary Flow under Ground-based Conditions (TLC 비접촉 온도측정과 중력장에서 열모세관 현상 구명)

  • 엄용균;유재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1071-1075
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wail and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

A simulation on the energy saving based on different temperature tracing method and weather condition in electrical power plant (화력발전소 배관시스템의 운전 및 기후조건에 따른 에너지절감에 관한 시뮬레이션)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • Most of steam power plants in Korea are using the method of heating the feed water whenever the ambient temperature around the power plant area below $5^{\circ}C$ to prevent freezing water flowing in the pipe in winter time. But this kind of heat supplying system is not useful to save energy. If we take the method that the temperature of the each pipe is controled by direct measure of temperature by attaching sensor on the outside surface of the feed water tubes, then we can expect that a plenty of energy can be saved. In this study, the computer simulation is used to compare the energy consumption loads of both systems. Energy saving rate is calculated for the location of Incheon area in winter season. Four convection heat transfer coefficients for the ambient air and three initial flowing water temperature inside the tube were used. The result shows that the temperature control system using sensor represents more than 95% of energy saving rate in Incheon area. Even in the severe January weather condition, the energy saving rate is almost 75% in two days basis and even 83% in one day basis.