• 제목/요약/키워드: steady heat conduction

검색결과 86건 처리시간 0.023초

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

가정용 냉장고의 에너지 노즈부 열전달 특성에 관한 연구 (A Study on the Heat Transfer Performance of an Energy-Nose Section in a Household Refrigerator-Freezer)

  • 이무연;이동연;김용찬
    • 대한기계학회논문집B
    • /
    • 제31권6호
    • /
    • pp.574-580
    • /
    • 2007
  • The objective of this article is to present an analysis of all heat transfer paths through the energy nose under closed door conditions when refrigeration system of household refrigerator-freezer is operating on. Both experimental and numerical methods are suggested as a means of determining the overall energy nose load amount as well as the load due to each pathway such as mullion section and F and R sides of the household refrigerator-freezer. In other words, all loads determined in this article are just energy nose and not the loads seen by the refrigeration system. We suggest good ideas for improving the heat transfer losses such as conduction and convection through the energy nose. As we can be known from the experimental test results, it is effective to prevent the heat loss of a mullion section. And energy efficiency is also decreased approximately 6% compared to that of a baseline sample test result. As we can be known from the Ansys 8.1 analysis, it is shown the steady state temperature distribution in figures from 6 to 8. And the direction of the heat flow through the energy nose section is also easily seen from that In conclusion, the article is focused on an energy nose section in household refrigerator-freezer for practical proposes which is the energy saving in a household refrigerator-freezer. And the method suggested may be applied to any make or model to aid in the search for high efficient energy nose section of household side by side refrigerator-freezer as well as top mounted refrigerator-freezer, commercial refrigerator and so on.

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型) (A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State)

  • 왕수균;조원철;이원환
    • 대한토목학회논문집
    • /
    • 제11권4호
    • /
    • pp.103-112
    • /
    • 1991
  • 본(本) 연구(硏究)는 일정균등(一定均等)한 열적(熱的) 특성(特性)을 가지고 있으며 상변화(相變化) 없는 등방(等方) 이질성(異質性)의 3차원(次元) 대수층계(帶水層系)의 열(熱)흐름과 정상상태(定常狀態)의 지하수(地下水)흐름을 모의발생(模擬發生)할 수 있는 유한차분(有限差分) 모형(模型)을 확립(確立)한 것이다. 이 모형(模型)은 대규모(大規模) 지하수(地下水) 흐름체계(體系)에서 폐기물(廢棄物)의 지하저류시(地下貯溜時) 지하수(地下水) 흐름과 발생(發生) 혹은 주입(注入)된 열(熱)의 흐름을 예측(豫測) 분석(分析)하기 위하여 확립(確立)된 것이다. 이러한 대수층계(帶水層系)의 지하수(地下水) 흐름에 작용(作用)하는 조건(條件)으로는 강우주입(降雨注入)으로 인한 수문학적(水文學的) 조건(條件)과 고정(固定)된 수리수두(水理水頭) 경계조건(境界條件) 등(等)이 포함(包含)되고, 열(熱)흐름에는 지열(地熱)의 흐름, 지표면(地表面)으로의 전도(傳導), 주입(注入)에 의한 이류(移流), 고정(固定) 수두경계(水頭境界)로 향(向)한 또는 고정수두경계(固定水頭境界)로 부터의 이류(移流) 등(等)이 포함(包含)된다. 본(本) 모형(模型)에서는 지하수(地下水)흐름과 열(熱)흐름 방정식(方程式)을 번갈아 푸는 교대반복과정(交代反復過程)을 사용(使用)하고, 두 방정식(方程式)의 계산(計算)에는 직접해법(直接解法)을 사용(使用)한다. 이동시간(移動時間)은 모형공간(模型空間)에서 입자추적(粒子追跡)으로 결정(決定)되며, 분할(分轄)된 구역내(區域內)의 지하수(地下水) 유속(流速)은 구역내(區域內)의 유속(流速)을 선형(線形)으로 보간(補間)하여 계산(計算)한다. 본(本) 모형(模型)을 경상북도(慶尙北道) 영일군(迎日郡) 송라면(松羅面) 지경리(地境里) 일대(一帶)의 지하수계(地下水系)에 적용(適用)하여 이 일대(一帶) 지하(地下) 암반층(岩盤層)의 수두분포(水頭分布), 유동로(流動路), 이동시간(移動時間) 및 지하수온분포(地下水溫分布)를 계산(計算)하여 지하수(地下水) 유동체계(流動體系)를 분석(分析)하였다.

  • PDF

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

TV 유리의 반복 성형공정에서 금형 열사이클 해석을 위한 효과적 방법 (An Efficient Method for Mold Thermal Cycle Analysis in Repeated Forming Process of TV Glass)

  • 최주호;김준범;황정해;하덕식
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1219-1226
    • /
    • 2000
  • An efficient method is developed for plunger thermal cycle analysis in repeated forming process of the TV glass. The plunger undergoes temperature fluctuation during a cycle due to the repeated contact and separation from the glass, which attains a cyclic steady state having same temperature history at every cycle. Straightforward analysis of this problem brings about more than 80 cycles to get reasonable solution, and yet hard to setup stopping criteria due to extremely slow convergence. An exponential fitting method is proposed to overcome the difficulty, which finds exponential function to best approximate temperature values of 3 consecutive cycles, and new cycle is restarted with the fitted value at infinite time. Numerical implementation shows that it reduces the number of cycles dramatically to only 6-18 cycles to reach convergence within 10 accuracy. A system for the analysis is constructed, in which the thermal analysis is performed by commercial software ANSYS, and the fitting of the result is done by IMSL library. From the parametric studies, one reveals some important facts that although the plunger cooling or the glass thickness is increased, its counter part in contact is not much affected, duo to the low thermal conductance of the glass.

비선형 열탄성 연성구조의 위상 최적설계 (Topology Design Optimization of Nonlinear Thermo-elastic Structures)

  • 문민영;장홍래;김민근;조선호
    • 한국전산구조공학회논문집
    • /
    • 제23권5호
    • /
    • pp.535-541
    • /
    • 2010
  • 본 연구에서는 정상상태의 비선형 열탄성 문제에 대하여 탄성 계수 및 열전도 계수에 대해서 보조변수법을 이용한 연속체 기반의 설계민감도 방정식을 유도하였고, 온도와 변위장이 연성된 보조방정식을 정의하여 효율적으로 설계민감도 해석을 수행하여 위상 최적설계에 적용하였다. 수치 예제를 통하여 열탄성 문제에서 위상 최적설계가 갖는 요소망 의존성을 살펴보았다. 또한 열 하중이 지배적인 경우와 기계적 하중이 지배적인 경우를 비교하여 다중 물리 연성문제에서 위상 최적설계가 갖는 하중에 대한 의존성을 고찰하였다.

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Instability of Evaporation Fronts in the Interstellar Medium

  • 김정규;김웅태
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • The neutral component of the interstellar medium (ISM) is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that the CNM--WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) in terrestrial flames. To explore dynamical consequences of the DLI in the ISM, we perform a linear stability analysis of the DLI including the effect of thermal conduction as well as nonlinear hydrodynamic simulations. We find that the DLI is suppressed at short length scales via heat transport. The linear growth time of the fastest growing mode is proportional to the square of the evaporation flow speed of the CNM relative to the interface and is typically >10 Myr. In the nonlinear stage, perturbations grow into cusp-like structure protruding toward the WNM, and soon reach a steady state where the evaporation rate is increased by a factor of 2 compared to the initial state. We demonstrate that the amplitude of the interface distortion and enhancement in evaporation rate are determined primarily by the density ratio between the CNM and WNM. Given quite a long growth time and highly subsonic velocities at saturation, the DLI is unlikely to play an important role in the ISM dynamics.

  • PDF

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.