References
- ACI Committee 349 (2001), Commentary on Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349R-01), American Concrete Institute, Mich
- ANSYS - User's Manual. Ver. 8.0 (2004), ANSYS, Inc
- Association of German Engineers (VDI) and VDI Society for Chemical and Process Engineering (1993), VDI Heat Atlas, VDI- Verlag GmbH, Dusseldorf, Germany
- Bangash, M.Y.H. (1989), Concrete and Concrete Structures: Numerical Modelling and Application, Elsevier Applied Science, NY
- Chen, Q.S., Wegrzyn, J. and Prasad, V (2004), 'Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks', Cryogenics, 44(10), 701-709 https://doi.org/10.1016/j.cryogenics.2004.03.020
- Choi, C.K., Lee, T.Y. and Lee, E.J. (2002), 'Improved finite element models for the in-ground LNG storage tank', J. the Korean Society of Civil Engineers, 22(5-A), 1175-1182
- DAELIM Industrial Co., Ltd. and DYWIDAG (1995), Inchon LNG-receiving Terminal (lst Extension)
- DAEWOO Corp., DAELIM Industrial Co., Ltd. and OBAYASHI Corp. (1999), Tongyoung LNG Terminal Project
- Ghali, A. and Elliott, E. (1992), 'Serviceability of circular prestressed concrete tanks', ACI Struct. J., 89(3), 345-355
- Ghali, A. and Favre, R. (1994), Concrete Structures: Stresses and Deformations, 2nd ed., E & FN Spon, London
- Goto, Y. and Miura, T. (1979), 'Experimental studies on properties of concrete cooled to about minus 160°C', Technology Reports (Tohoku Univ.), 44(2), 357-385
- Ivanyi, G. (1987), 'Local and global cryogenic attacks', Proc. of the 1st Int. Corf. on Concrete for Hazard Protection
- Japan Gas Association (1979), Recommended Practice for LNG Inground Storage (RPIS)
- Jeon, S.J. (2004), 'Consistent assessment for liquid tightness of LNG storage tank subjected to cryogenic temperature-induced forces', J. the Korean Society of Civil Engineers, 24( I-A), 203-210
- Jeon, S.J., Chung, C.H., Jin, B.M. and Kim, Y.J. (2004), 'Liquid tightness design of LNG storage tank incorporating cryogenic temperature-induced stresses', Proc. of CONSEC'04, Korea
- Miura, T. (1989), 'The properties of concrete at very low temperatures', Materials and Structures, 22(130), 243-254 https://doi.org/10.1007/BF02472556
- Nakano, M. (2001), 'Technological trend and latest technological development of LNG inground storage tanks', J. Construction Management and Engineering (Japan Society of Civil Engineers), 51(679), 1-20
- Nawy, E.G. (1985), 'Flexural cracking behavior of pretensioned and post-tensioned beams: The state of the art', ACI J., 82(6), 890-900
- Rashed, A., Elwi, A.E. and Rogowsky, D.M. (2002), 'Reinforced, partially prestressed concrete water tank walls', ACI Struct. J., 99(3), 288-298
- Shekarchi, M., Debicki, G, Granger, L. and Billard, Y. (2002), 'Study of leaktightness integrity of containment wall without liner in high performance concrete under accidental conditions - I. Experimentation', Nucl. Eng. Des., 213(1), 1-9 https://doi.org/10.1016/S0029-5493(01)00521-0
- Suri, K.M. and Dilger, W.H. (1986), 'Crack width of partially prestressed concrete members', ACI J., 83(5), 784-797
- Watanabe, N., Endo, H., Xuehui, A., Nakano, M. and Aoki, H. (2003), 'Application of non-linear analysis to structural design of a LNG inground tank', J. Construction Management and Engineering (Japan Society of Civil Engineers), 60(742), 87-100
- Wermann, T. (1998), 'Cryogenic cube tests - Leakage, temperature, deformation', http://www.concrete.ct.tudelft. nl
Cited by
- Thermal stress analysis of concrete wall of LNG tank during construction period vol.49, pp.6, 2016, https://doi.org/10.1617/s11527-015-0656-9
- Estimation of the energy efficiency of cryogenic filled tank use in different systems and devices vol.101, 2016, https://doi.org/10.1016/j.applthermaleng.2015.09.052
- Assessment of the fire resistance of a nuclear power plant subjected to a large commercial aircraft crash vol.247, 2012, https://doi.org/10.1016/j.nucengdes.2012.02.003
- Probabilistic analysis of a liquefied natural gas storage tank vol.30, pp.17-18, 2010, https://doi.org/10.1016/j.applthermaleng.2010.07.033
- Numerical analysis for behavior of outer concrete tank in emergency LNG spillage vol.14, pp.4, 2014, https://doi.org/10.12989/cac.2014.14.4.369
- Finite Element Modeling of Shop Built Spherical Pressure Vessels vol.05, pp.06, 2013, https://doi.org/10.4236/eng.2013.56064
- Analysis of two main LNG CCS (cargo containment system) insulation boxes for leakage safety using experimentally defined thermal properties vol.37, 2012, https://doi.org/10.1016/j.apor.2012.04.002
- Application of Hermitian wavelet finite element method on temperature field analysis of LNG tank under ultra-low temperature vol.121, pp.2, 2015, https://doi.org/10.1007/s10973-015-4627-8
- Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands vol.36, pp.6, 2016, https://doi.org/10.12652/Ksce.2016.36.6.0999
- Rapid calculation procedure to determine the pressurizing period for stored cryogenic fluids vol.30, pp.14-15, 2010, https://doi.org/10.1016/j.applthermaleng.2010.05.002
- Temperature Field Analysis of LNG Tank under Ultra-Low Temperature Based on Finite Element Method vol.733, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.733.566
- Thermal Cycling Toughness and Strength Estimation of Cryogenic Filled Tank vol.179, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201817901014
- Early-age thermal analysis and strain monitoring of massive concrete structures vol.21, pp.3, 2018, https://doi.org/10.12989/cac.2018.21.3.279
- Automatic air-cooling system for early-age crack control in concrete vol.172, pp.5, 2007, https://doi.org/10.1680/jcien.18.00036
- Optimum Arrangement Design of Mastic Ropes for Membrane-Type LNG Tanks Considering the Flatness of Thermal Insulation Panel and Production Cost vol.8, pp.5, 2020, https://doi.org/10.3390/jmse8050353
- Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank vol.13, pp.21, 2007, https://doi.org/10.3390/en13215578