• Title/Summary/Keyword: stator winding fault

Search Result 67, Processing Time 0.023 seconds

Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition (Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상)

  • Kim, Hee-Woon;Yoon, Jin-Gyu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

Feature Extraction of Partial Discharge for Stator Winding of High Voltage Motor (고압전동기 고정자권선의 부분방전 특징추출)

  • Park, Jae-Jun;Kim, Hee-Dong;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.112-116
    • /
    • 2004
  • On-line monitoring of fault discharge is an important approach for indicating the condition of electrical insulation of stator winding in high voltage motor. In this paper, several key aspects of on-line monitoring system are discussed, involving the characteristics of fault discharge of stator winding in high voltage motor, spectrum analysis of four simulation fault signals, feature extraction of internal fault discharge from apply voltage to breakdown. The study of the partial discharge activities allows to highlight the ageing stage in the winding fault under test. During the life of the winding insulation fault, the shape of PD signal change relating to the ageing stage. The ageing of stator winding insulation fault of high voltage motor is investigated based on the characteristics of partial discharge pulse distribution and statistical parameters, such as maximum, skewness and kurtosis using discrete wavelet transform coefficients.

  • PDF

A Study on Feature Extraction of Fault Signal for Stator Winding using Epoxy/Mica Coupler (에폭시/마이카 커플러를 이용한 고정자권선 결함신호 특징추출에 관한연구)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.225-226
    • /
    • 2005
  • In this Study, we have acquired 5-simulation Fault types Signals of high voltage Motor stator winding using epoxy/mica coupler. In order to know stator winding fault type using fault signals, we have performed feature extraction to apply wavelet transform technique. we have obtained skewness and kurtosis as statistical parameters of fault signal pattern from non deterioration state winding. We have know that 5 fault signals types have done an exponential function pattern shape but individually fault a class widely was different each other a signal waveform of pattern.

  • PDF

Auto-Detection of Stator Winding Fault of Small Induction Motor using LabVIEW (LabVIEW를 이용한 소형 유도전동기의 권선고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Woo, Hyeok-Jae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.202-206
    • /
    • 2006
  • In this paper, an auto detection method of stator winding fault of small induction motor is suggested. The Park's vector pattern which is obtained from 3-phase current signal by d-q transforming, is very good to detect winding fault. Comparing the Park's vector pattern of testing motor with its of healthy motor, the Park's vector pattern of fault motor is became an ellipse and the asymmetry is increased by the winding fault series. So for detecting the dis-symmetry, id-filtered function, Min-value, and Max-value are suggested for auto detecting. Using LabVIEW programing, 3-phase healthy motor and several kind of winding fault motors are tested and the test results are shown that the suggested method can gives us a possibility of an auto detecting winding fault.

Stator Winding Fault Diagnosis in Small Three-Phase Induction Motors by Park's Vector Approach (Park's Vector 기법을 이용한 소형 3상 유도 전동기의 권선 고장 진단)

  • 박규남;한민관;우혁재;송명현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1291-1296
    • /
    • 2003
  • This paper deals with efficient diagnostic for stator winding fault of 3-phase induction motor using a current Park's vector approach. This method firstly transforms 3-phase stator current to vertical axis current and horizontal axis current of Park's Vector, and then obtains the each Park's Vector Pattern and detects stator winding fault by comparing to Park's Vector Pattern of healthy and fault. Experimental results, obtained by using induction motor having inter-turn fault of 2, 10, 20 turn, demonstrate the effectiveness of the proposed technique, for detecting the presence of stator winding fault under 25%, 50%, and 100% of full load condition.

Calculation of Distributed Magnetic Flux Density under the Stator-Turn Fault Condition

  • Kim, Kyung-Tae;Hur, Jin;Kim, Byeong-Woo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.552-557
    • /
    • 2013
  • This paper proposed an analytical model for the distributed magnetic field analysis of interior permanent magnet-type blush-less direct current motors under the stator-turn fault condition using the winding function theory. Stator-turn faults cause significant changes in electric and magnetic characteristic. Therefore, many studies on stator-turn faults have been performed by simulation of the finite element method because of its non-linear characteristic. However, this is difficult to apply to on-line fault detection systems because the processing time of the finite element method is very long. Fault-tolerant control systems require diagnostic methods that have simple processing systems and can produce accurate information. Thus analytical modeling of a stator-turn fault has been performed using the winding function theory, and the distributed magnetic characteristics have been analyzed under the fault condition. The proposed analytical model was verified using the finite element method.

Auto-Diagnosis for Stator Winding Faults Using Distortion Ratio of Park's Vector Pattern (Park's 벡터 패턴의 왜곡률을 이용한 고정자 권선 고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.160-163
    • /
    • 2008
  • In this paper, an auto-diagnosis method of the stator winding fault for small induction motor is suggested. 3-phase stator currents are sampled, filtered, and transformed with Park's vector transformation. After then Park's vector patterns are obtained. To detect the stator winding fault automatically, a distortion ratio is newly defined and compared with the one of healthy motor, and the threshold levels of distortion ratio are suggested. The 2-turn, 4-turn, 8-turn winding fault are tested with no load, 25%, 50%, 75%, and 100% rated load. The distortion ratio of the Park's vector patterns are increased as the increase of the faulted turns, but are same as the increase of the load.

An Artificial Neural Networks Application for the Automatic Detection of Severity of Stator Inter Coil Fault in Three Phase Induction Motor

  • Rajamany, Gayatridevi;Srinivasan, Sekar
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2219-2226
    • /
    • 2017
  • This paper deals with artificial neural network approach for automatic detection of severity level of stator winding fault in induction motor. The problem is faced through modelling and simulation of induction motor with inter coil shorting in stator winding. The sum of the absolute values of difference in the peak values of phase currents from each half cycle has been chosen as the main input to the classifier. Sample values from workspace of Simulink model, which are verified with experiment setup practically, have been imported to neural network architecture. Consideration of a single input extracted from time domain simplifies and advances the fault detection technique. The output of the feed forward back propagation neural network classifies the short circuit fault level of the stator winding.

Feature Extraction of Partial Discharge for Stator Winding of High Voltage Motor (고압전동기 고정자권선의 부분방전 특징추출)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2004
  • On-line monitoring of fault discharge is an important approach for indicating the condition of electrical insulation of stator winding in high voltage motor. In this paper, several key aspects of on-line monitoring system are discussed, involving the characteristics of fault discharge of stator winding in high voltage motor, spectrum analysis of four simulation fault signals, feature extraction of internal fault discharge from apply voltage to breakdown. The study of the partial discharge activities allows to highlight the ageing stage in the winding fault under test. During the life of the winding insulation fault, the shape of PD signal change relating to the ageing stage. The ageing of stator winding insulation fault of high voltage motor is investigated based on the characteristics of partial discharge pulse distribution and statistical parameters, such as maximum, skewness and kurtosis using discrete wavelet trnasform coefficients.

  • PDF

Study on Distortion Ratio Calculation of Park's Vector Pattern for Diagnosis of Stator Winding Fault of Induction Motor (유도전동기의 고정자 권선고장 진단을 위한 팍스벡터 패턴의 왜곡률 연산에 대한 연구)

  • Yang, Chul-Oh;Park, Kyu-Nam;Song, Myung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.643-649
    • /
    • 2012
  • The diagnosis technique of stator winding faults based on Motor Current Signature Analysis(MCSA) was suggested. Park's vector pattern, the circle that is drawn by d-q transformed currents($i_d$, $i_q$), is widely used for stator winding faults detection. The current Distortion Ratio(DR), defined by the ratio of max axis and min axis of ellipse of Park's vector's pattern, was more simple and powerful method than the Park's vector pattern. In this study, a calculation method of distortion ratio of Park's vector pattern was suggested for auto diagnosis of stator winding short fault and usefulness of suggested calculation method of distortion ratio was verified through simulation using LabVIEW program.