• Title/Summary/Keyword: statistical variance

Search Result 1,682, Processing Time 0.027 seconds

Use of Pseudo-Likelihood Estimation in Taylor's Power Law with Correlated Responses

  • Park, Bum-Hee;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.993-1002
    • /
    • 2008
  • Correlated responses have been widely analyzed since Liang and Zeger (1986) introduced the famous Generalized Estimating Equations(GEE). However, their variance functions were restricted to known quantifies multiplied by scale parameter. In so many industries and academic/research fields, power-of-the-mean variance function is one of the common variance function. We suggest GEE-type pseudolikelihood estimation based on the power-of-the-mean variance using existing software and investigate it's efficiency for different working correlation matrices.

Correlation Test by Reduced-Spread of Fuzzy Variance

  • Kang, Man-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.147-155
    • /
    • 2012
  • We propose some properties for a fuzzy correlation test by reduced-spread fuzzy variance for sample fuzzy data. First, we define the condition of fuzzy data for repeatedly observed data or that which includes error term data. By using the average of spreads for fuzzy numbers, we reduce the spread of fuzzy variance and define the agreement index for the degree of acceptance and rejection. Given a non-normal random fuzzy sample, we have bivariate normal distribution by apply Box-Cox power fuzzy transformation and test the fuzzy correlation for independence between the variables provided by the agreement index.

The restricted maximum likelihood estimation of a censored regression model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.291-301
    • /
    • 2017
  • It is well known in a small sample that the maximum likelihood (ML) approach for variance components in the general linear model yields estimates that are biased downward. The ML estimate of residual variance tends to be downwardly biased. The underestimation of residual variance, which has implications for the estimation of marginal effects and asymptotic standard error of estimates, seems to be more serious in some limited dependent variable models, as shown by some researchers. An alternative frequentist's approach may be restricted or residual maximum likelihood (REML), which accounts for the loss in degrees of freedom and gives an unbiased estimate of residual variance. In this situation, the REML estimator is derived in a censored regression model. A small sample the REML is shown to provide proper inference on regression coefficients.

Bayesian Analysis of Multivariate Threshold Animal Models Using Gibbs Sampling

  • Lee, Seung-Chun;Lee, Deukhwan
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.177-198
    • /
    • 2002
  • The estimation of variance components or variance ratios in linear model is an important issue in plant or animal breeding fields, and various estimation methods have been devised to estimate variance components or variance ratios. However, many traits of economic importance in those fields are observed as dichotomous or polychotomous outcomes. The usual estimation methods might not be appropriate for these cases. Recently threshold linear model is considered as an important tool to analyze discrete traits specially in animal breeding field. In this note, we consider a hierarchical Bayesian method for the threshold animal model. Gibbs sampler for making full Bayesian inferences about random effects as well as fixed effects is described to analyze jointly discrete traits and continuous traits. Numerical example of the model with two discrete ordered categorical traits, calving ease of calves from born by heifer and calving ease of calf from born by cow, and one normally distributed trait, birth weight, is provided.

Option Pricing with Bounded Expected Loss under Variance-Gamma Processes

  • Song, Seong-Joo;Song, Jong-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.575-589
    • /
    • 2010
  • Exponential L$\acute{e}$evy models have become popular in modeling price processes recently in mathematical finance. Although it is a relatively simple extension of the geometric Brownian motion, it makes the market incomplete so that the option price is not uniquely determined. As a trial to find an appropriate price for an option, we suppose a situation where a hedger wants to initially invest as little as possible, but wants to have the expected squared loss at the end not exceeding a certain constant. For this, we assume that the underlying price process follows a variance-gamma model and it converges to a geometric Brownian motion as its quadratic variation converges to a constant. In the limit, we use the mean-variance approach to find the asymptotic minimum investment with the expected squared loss bounded. Some numerical results are also provided.

Exact Tests for Variance Ratios in Unbalanced Random Effect Linear Models

  • Huh, Moon-Yul;Li, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 1996
  • In this paper, we propose a method for an exact test of H : $p_i$ = $r_i$ for all i against K : $p_i$ $\neq$ $r_i$ for some i in an unbalanced random effect linear model, where $p_i$ denotes the ratio of the i-th variance component to the error variance. Then we present a method to test H : $p_i$ $\leq$ r against K : $p_i$> r for some specific i by applying orthogonal projection on the model. We also show that any test statistic that follows an F-distribution on the boundary of the hypotheses is equal to the one given here.

  • PDF

Rao-Wald Test for Variance Ratios of a General Linear Model

  • Li, Seung-Chun;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1999
  • In this paper we propose a method to test $\textit{H}$:$\rho_i$=$\gamma_i$ for 1$\leq$$\textit{i}$$\leq$$\ell$ against $\textit{K}$:$\rho_i$$\neq$$\gamma_i$ for some iin k-variance component random or mixed linear model where $\rho$i denotes the ratio of the i-th variance component to the error variance and $\ell$$\leq$K. The test which we call Rao-Wald test is exact and does not depend upon nuisance parameters. From a numerical study of the power performance of the test of the interaction effect for the case of a two-way random model Rao-Wald test was seen to be quite comparable to the locally best invariant (LBI) test when the nuisance parameters of the LBI test are assumed known. When the nuisance parameters of the LBI test are replaced by maximum likelihood estimators Rao-Wald test outperformed the LBI test.

  • PDF

Estimating Variance Function with Kernel Machine

  • Kim, Jong-Tae;Hwang, Chang-Ha;Park, Hye-Jung;Shim, Joo-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.383-388
    • /
    • 2009
  • In this paper we propose a variance function estimation method based on kernel trick for replicated data or data consisted of sample variances. Newton-Raphson method is used to obtain associated parameter vector. Furthermore, the generalized approximate cross validation function is introduced to select the hyper-parameters which affect the performance of the proposed variance function estimation method. Experimental results are then presented which illustrate the performance of the proposed procedure.

Nonnegative variance component estimation for mixed-effects models

  • Choi, Jaesung
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.523-533
    • /
    • 2020
  • This paper suggests three available methods for finding nonnegative estimates of variance components of the random effects in mixed models. The three proposed methods based on the concepts of projections are called projection method I, II, and III. Each method derives sums of squares uniquely based on its own method of projections. All the sums of squares in quadratic forms are calculated as the squared lengths of projections of an observation vector; therefore, there is discussion on the decomposition of the observation vector into the sum of orthogonal projections for establishing a projection model. The projection model in matrix form is constructed by ascertaining the orthogonal projections defined on vector subspaces. Nonnegative estimates are then obtained by the projection model where all the coefficient matrices of the effects in the model are orthogonal to each other. Each method provides its own system of linear equations in a different way for the estimation of variance components; however, the estimates are given as the same regardless of the methods, whichever is used. Hartley's synthesis is used as a method for finding the coefficients of variance components.