• Title/Summary/Keyword: statistical signal processing

Search Result 155, Processing Time 0.024 seconds

Real-time passive millimeter wave image segmentation for concealed object detection (은닉 물체 검출을 위한 실시간 수동형 밀리미터파 영상 분할)

  • Lee, Dong-Su;Yeom, Seok-Won;Lee, Mun-Kyo;Jung, Sang-Won;Chang, Yu-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.181-187
    • /
    • 2012
  • Millimeter wave (MMW) readily penetrates fabrics, thus it can be used to detect objects concealed under clothing. A passive MMW imaging system can operate as a stand-off type sensor that scans people in both indoors and outdoors. However, because of the diffraction limit and low signal level, the imaging system often suffers from low image quality. Therefore, suitable statistical analysis and computational processing would be required for automatic analysis of the images. In this paper, a real-time concealed object detection is addressed by means of the multi-level segmentation. The histogram of the image is modeled with a Gaussian mixture distribution, and hidden object areas are segmented by a multi-level scheme involving $k$-means, the expectation-maximization algorithm, and a decision rule. The complete algorithm has been implemented in C++ environments on a standard computer for a real-time process. Experimental and simulation results confirm that the implemented system can achieve the real-time detection of concealed objects.

A study on the improvement of academic achievement of probability and statistics in the hardware curriculum (하드웨어 전공자들의 확률 및 통계 관련 학업성취도 제고에 관한 연구)

  • Lee, Seung-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.887-898
    • /
    • 2016
  • The purpose of this study is to improve the learning ability of probability/statistics for H/W majors. Firstly, we developed a teaching method coupling probability/statistics with programming and multimedia signal processing courses that are opened in the H/W major curriculum. By use of its teaching-learning, we tried to verify the effectiveness on the improvement of learner's academic achievement and then analyze its educational efficiency through the regression analysis. Secondly, by analyzing the surveys and the statistical results of the education cases, we proposed a management plan on efficient teaching-learning in order to cultivate the learning ability of probability/statistics at a future time. Lastly, we concluded that probability/statistics is a required course of learners so as to contribute for the advanced technical development and the enhanced competitiveness in the field of the H/W.

Mobile ECG Measurement System Design with Fetal ECG Extraction Capability (태아 ECG 추출 기능을 가지는 모바일 심전도 측정 시스템 설계)

  • Choi, Chul-Hyung;Kim, Young-Pil;Kim, Si-Kyung;You, Jeong-Bong;Seo, Bong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.431-438
    • /
    • 2017
  • In this paper, the abdomen ECG(AECG) is employed to measure the mother's ECG instead of the conventioanl thoracic ECG measurement. The fetus ECG signal can be extracted from the AECG using an algorithm that utilizes the mobile fetal ECG measurement platform, which is based on the BLE (Bluetooth Low Energy). The algorithm has been implemented by using a replacement processor processed directly from the platform BLE instead of the large statistical data processing required in the ICA(Independent component analysis). The proposed algorithm can be implemented on a mobile BLE wireless ECG system hardware platform to process the maternal ECG. Wireless technology can realize a compact, low-power radio system for short distance communication and the IOT(Intenet of Things) enables the transmission of real-time ECG data. It was also implemented in the form of a compact module in order for mothers to be able to download and store the collected ECG data without having to interrupt or move the logger, and later link the module to a computer for downloading and analyzing the data. A mobile ECG measurement prototype is manufactured and tested to measure the FECG for pregnant women. The experimental results verify a real-time FECG extraction capability for the proposed system. In this paper, we propose an ECG measurement system that shows approximately 91.65% similarity to the MIT database and the conventional algorithm and SNR performance about 10% better.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

Evaluation of Source Identification Method Based on Energy-Weighting Level with Portal Monitoring System Using Plastic Scintillator

  • Lee, Hyun Cheol;Koo, Bon Tack;Choi, Chang Il;Park, Chang Su;Kwon, Jeongwan;Kim, Hong-Suk;Chung, Heejun;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.117-129
    • /
    • 2020
  • Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.

Evaluation of Surface Moisture Content of Liriodendron tulipifera Wood in the Hygroscopic Range Using NIR Spectroscopy (근적외선 분광분석법을 이용한 백합나무 목재의 섬유포화점 이하 표면함수율 평가)

  • Eom, Chang-Deuk;Han, Yeon-Jung;Chang, Yoon-Sung;Park, Jun-Ho;Choi, Joon-Weon;Choi, In-Gyu;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.526-531
    • /
    • 2010
  • For efficient use of wood, it is important to control moisture of wood in processing wood. Near-infrared (NIR) spectroscopy can be used to estimate the physical and chemical properties of materials quickly and nondestructively. In this study, it was intended to measure the moisture contents on the surface of wood using NIR spectroscopy coupled with multivariate analytic statistical techniques. Because NIR spectroscopy is affected by the chemical components of the specimens and contains signal noise, a regression model for detecting moisture content of wood was established after carrying out several numerical pretreatments such as Smoothing, Derivative and Normalization in this study. It shows that the regression model using NIR absorbance in the range of 750~2,500 nm predicts the actual surface moisture content very well. Near-infrared spectroscopy technique developed in this study is expected to improve a technology to control moisture content of wood in using and drying process.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

Subject Test Using Electroencephalogram According to Variation of Autostereoscopic Image Quality (무안경 입체영상의 화질변화에 따른 뇌파 기반 사용자 반응 분석)

  • Moon, Jae-Chul;Hong, Jong-Ui;Choi, Yoo-Joo;Suh, Jung-Keun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.195-202
    • /
    • 2016
  • There have been many studies on subject tests for 3D contents using 3D glasses, but there is a limited research for 3D contents using autostereoscopic display. In this study, we investigated to assess usability of electroencephalogram (EEG) as an objective evaluation for 3D contents with different quality using autosteroscopic display, especially for lenticular lens type. The image with optimal quality and the image with distorted quality were separately generated for autostereosopic display with lenticular lens type and displayed sequentially through lenticular lens for 26 subjects. EEG signals of 8 channels from 26 subjects exposed to those images were detected and correlation between EEG signal and the quality of 3D images were statistically evaluated to check differences between optimal and distorted 3D contents. What we found was that there was no statistical significance for a wave vibration, however b wave vibration shows statistically significant between optimal and distorted 3D contents. b wave vibration observed for the distorted 3D image was stronger than that for the optimal 3D image. This results suggest that subjects viewing the distorted 3D contents through lenticular lens experience more discomfort or fatigue than those for the optimum 3D contents, which resulting in the greater b wave activity for those watching the distorted 3D contents. In conclusion, these results confirm that electroencephalogram (EEG) analysis can be used as a tool for objective evaluation of 3D contents using autosteroscopic display with lenticular lens type.