• Title/Summary/Keyword: statistical modeling technique

Search Result 135, Processing Time 0.027 seconds

Novel Approach for Modeling Wireless Fading Channels Using a Finite State Markov Chain

  • Salam, Ahmed Abdul;Sheriff, Ray;Al-Araji, Saleh;Mezher, Kahtan;Nasir, Qassim
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.718-728
    • /
    • 2017
  • Empirical modeling of wireless fading channels using common schemes such as autoregression and the finite state Markov chain (FSMC) is investigated. The conceptual background of both channel structures and the establishment of their mutual dependence in a confined manner are presented. The novel contribution lies in the proposal of a new approach for deriving the state transition probabilities borrowed from economic disciplines, which has not been studied so far with respect to the modeling of FSMC wireless fading channels. The proposed approach is based on equal portioning of the received signal-to-noise ratio, realized by using an alternative probability construction that was initially highlighted by Tauchen. The associated statistical procedure shows that a first-order FSMC with a limited number of channel states can satisfactorily approximate fading. The computational overheads of the proposed technique are analyzed and proven to be less demanding compared to the conventional FSMC approach based on the level crossing rate. Simulations confirm the analytical results and promising performance of the new channel model based on the Tauchen approach without extra complexity costs.

ECG Denoising by Modeling Wavelet Sub-Band Coefficients using Kernel Density Estimation

  • Ardhapurkar, Shubhada;Manthalkar, Ramchandra;Gajre, Suhas
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.669-684
    • /
    • 2012
  • Discrete wavelet transforms are extensively preferred in biomedical signal processing for denoising, feature extraction, and compression. This paper presents a new denoising method based on the modeling of discrete wavelet coefficients of ECG in selected sub-bands with Kernel density estimation. The modeling provides a statistical distribution of information and noise. A Gaussian kernel with bounded support is used for modeling sub-band coefficients and thresholds and is estimated by placing a sliding window on a normalized cumulative density function. We evaluated this approach on offline noisy ECG records from the Cardiovascular Research Centre of the University of Glasgow and on records from the MIT-BIH Arrythmia database. Results show that our proposed technique has a more reliable physical basis and provides improvement in the Signal-to-Noise Ratio (SNR) and Percentage RMS Difference (PRD). The morphological information of ECG signals is found to be unaffected after employing denoising. This is quantified by calculating the mean square error between the feature vectors of original and denoised signal. MSE values are less than 0.05 for most of the cases.

Carbonation depth prediction of concrete bridges based on long short-term memory

  • Youn Sang Cho;Man Sung Kang;Hyun Jun Jung;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.325-332
    • /
    • 2024
  • This study proposes a novel long short-term memory (LSTM)-based approach for predicting carbonation depth, with the aim of enhancing the durability evaluation of concrete structures. Conventional carbonation depth prediction relies on statistical methodologies using carbonation influencing factors and in-situ carbonation depth data. However, applying in-situ data for predictive modeling faces challenges due to the lack of time-series data. To address this limitation, an LSTM-based carbonation depth prediction technique is proposed. First, training data are generated through random sampling from the distribution of carbonation velocity coefficients, which are calculated from in-situ carbonation depth data. Subsequently, a Bayesian theorem is applied to tailor the training data for each target bridge, which are depending on surrounding environmental conditions. Ultimately, the LSTM model predicts the time-dependent carbonation depth data for the target bridge. To examine the feasibility of this technique, a carbonation depth dataset from 3,960 in-situ bridges was used for training, and untrained time-series data from the Miho River bridge in the Republic of Korea were used for experimental validation. The results of the experimental validation demonstrate a significant reduction in prediction error from 8.19% to 1.75% compared with the conventional statistical method. Furthermore, the LSTM prediction result can be enhanced by sequentially updating the LSTM model using actual time-series measurement data.

PROCESS ANALYSIS OF AUTOMOTIVE PARTS USING GRAPHICAL MODELLING

  • IRIKURA Norio;KUZUYA Kazuyoshi;NISHINA Ken
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.295-300
    • /
    • 1998
  • Recently graphical modelling is being studied as a useful process analysis tool for exploratory causal analysis. Graphical modelling is a presentation method that uses graphs to describe statistical models of the structures of multivariate data. This paper describes an application of this graphical modeling with two cases from the automotive parts industry. One case is the unbalance problem of the pulley, an automotive generator part. There is multivariate data of the product from each of the processes which are connected in the series. By means of exploratory causal analysis between the variables using graphical modeling, the key processes which causes the variation of the final characteristics and their mechanism of the causal relationship have become clear. Another case is, also, the unbalanced problem of automotive starter parts which consists of many parts and is manufactured by complex machinery and assembling process. By means of the similar technique, the key processes are obtained easily and the results are reasonable from technical knowledge.

  • PDF

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.5
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

Modeling of the Cell Gap Process Characteristic on the Polymer Substrate for Flexible Liquid Crystal Display Applications

  • Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.502-505
    • /
    • 2005
  • The modeling for the cell gap process characteristic on the flexible liquid crystal display (LCD) process was investigated by response surface methodology (RSM). D-optimal design is carried out to build the design matrix. The analysis of variance (ANOVA) technique was used to analyze the significance level. The statistical analysis was used to verify the response surface model. The desirability function was used in the design-space optimization.

  • PDF

A Alternative Background Modeling Method for Change Detection (영상차이를 이용한 움직임 검출에 필요한 배경영상 모델링 및 갱신 기법 연구)

  • Chang, Il-Kwon;Kim, Kyoung-Jung;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.159-161
    • /
    • 2004
  • Many motion object detection algorithms rely on the process of background subtraction, an important technique that is used for detecting changes from a model of the background scene. This paper propose a novel method to update the background model image of a visual surveillance system which is not stationary. In order to do this, we use a background model based on statistical qualities of monitored images and another background model that excluded motions. By comparing each changed area computed from the two background model images and current monitored image, the areas that will be updated are decided.

  • PDF

Reactor Coolant Pump Seal Monitoring System Using Statistical Modeling Techniques (통계적모델을 이용한 원자로냉각재펌프 밀봉장치 성능감시)

  • Lee, Song-Kyu;Chung, Chang-Kyu;Bae, Jong-Kil;Ahn, Sang-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1386-1390
    • /
    • 2007
  • This paper presents the equipment condition monitoring technology for the process or the equipment using statistical techniques. The equipment condition monitoring system consists of an empirical model to estimate the expected sensor values of process variables and a diagnose model to detect the abnormal condition and to identify the root source of the problem. The empirical model is constructed by the analysis of historic data. The diagnose model uses the sequential probability ratio test (SPRT) technique. The monitoring system was tested with real operating data acquired from the Reactor Coolant Pump Seal in the Nuclear Power Plant. It can detect the system degradation or failure at the early stage since it is able to catch the subtle deviation of process variables from normal condition.

  • PDF

A Study on the Triphone Replacement in a Speech Recognition System with DMS Phoneme Models

  • Lee, Gang-Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.21-25
    • /
    • 1999
  • This paper proposes methods that replace a missing triphone with a new one selected or created by existing triphones, and compares the results. The recognition system uses DMS (Dynamic Multisection) model for acoustic modeling. DMS is one of the statistical recognition techniques proper to a small - or mid - size vocabulary system, while HMM (Hidden Markov Model) is a probabilistic technique suitable for a middle or large system. Accordingly, it is reasonable to use an effective algorithm that is proper to DMS, rather than using a complicated method like a polyphone clustering technique employed in HMM-based systems. In this paper, four methods of filling missing triphones are presented. The result shows that a proposed replacing algorithm works almost as well as if all the necessary triphones existed. The experiments are performed on the 500+ word DMS speech recognizer.

  • PDF

Predictive Modeling of River Water Quality Factors Using Artificial Neural Network Technique - Focusing on BOD and DO- (인공신경망기법을 이용한 하천수질인자의 예측모델링 - BOD와 DO를 중심으로-)

  • 조현경
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2000
  • This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.

  • PDF