• 제목/요약/키워드: statistical forecast model

검색결과 254건 처리시간 0.025초

사망률 예측을 위한 모형 비교 (A Comparison of Two Models for Forecasting Mortality in South Korea)

  • 박유성;김기환;이동희;이연경
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.639-654
    • /
    • 2005
  • 사망률 예측에 많이 사용되고 있는 Lee and Carter모형은 간결한 구조와 상대적으로 안정적인 예측력을 갖고 있는 것으로 알려져 있다. 그러나 연령별 사망률의 감소속도가 일정하게 유지된다는 가정으로 인하여 최근 연령별 사망률의 감소 패턴을 적절히 반영하지 못하고, 공변량을 사용할 수 없어 예측력을 제고할 수 없다는 제한점을 갖고 있다. 본 논문에서는 두 개의 확률과정을 이용하여 Lee and Carter 모형의 단점을 보완할 수 있는 Park, Choi and Kim의 모형을 소개하고 두 모형의 구조적인 특징을 서술하였다. 또한 각 모형에서 우리나라의 자료로 2005에서 2050년까지의 남녀별 예측기대여명을 작성하여 비교하였다.

뉴럴 네트워크의 최적화에 따른 유사태풍 예측에 관한 연구 (Study on Prediction of Similar Typhoons through Neural Network Optimization)

  • 김연중;김태우;윤종성;김인호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.427-434
    • /
    • 2019
  • Artificial intelligence (AI)-aided research currently enjoys active use in a wide array of fields thanks to the rapid development of computing capability and the use of Big Data. Until now, forecasting methods were primarily based on physics models and statistical studies. Today, AI is utilized in disaster prevention forecasts by studying the relationships between physical factors and their characteristics. Current studies also involve combining AI and physics models to supplement the strengths and weaknesses of each aspect. However, prior to these studies, an optimization algorithm for the AI model should be developed and its applicability should be studied. This study aimed to improve the forecast performance by constructing a model for neural network optimization. An artificial neural network (ANN) followed the ever-changing path of a typhoon to produce similar typhoon predictions, while the optimization achieved by the neural network algorithm was examined by evaluating the activation function, hidden layer composition, and dropouts. A learning and test dataset was constructed from the available digital data of one typhoon that affected Korea throughout the record period (1951-2018). As a result of neural network optimization, assessments showed a higher degree of forecast accuracy.

시차구조의 설정에 따른 시장변동의 조정과정 분석 (An Analysis for the Adjustment Process of Market Variations by the Formulation of Time tag Structure)

  • 김태호;이청림
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.87-100
    • /
    • 2003
  • 서로 연관관계에 있는 실제의 통계자료들은 동태적, 확률적 동시발생적으로 유발되며, 이로 인해 한 자료의 변동이 다른 자료에 미치는 영향은 같은 기간 뿐 아니라 시차를 두고 여러 기간에 걸쳐 지속되며 조정되어 간다. 그러나 일반적인 선형, 비선형 통계모형을 사용하여 현실동향을 분석하는 경우 자료의 이러한 특성에서 오는 시차관계를 통상 무시함으로써 변수 사이의 관계는 같은 기간 내에 결정되어야 하는 제약이 가해지게 된다. 그 결과 시간이 흐름에 따라 이들의 관계가 변화하는 과정이나 한 변수의 변동이 다른 변수에 미치는 장기적 영향도 추정할 수 없을 뿐 아니라 현실여건의 변동이나 전개과정을 설명하는 데도 큰 결함을 갖게 된다. 시차관계가 존재하는 변수에 실제 여건에 합당한 시차구조가 설정되면 현실이 정확히 반영되고, 모형에 내재된 변수들의 장단기 변동상황과 동태적 적응과정이 파악됨과 동시에 다양한 분석이 가능해지므로 모형의 활용도는 높아지게 된다.

변수변환을 통한 포항지역 미세먼지의 통계적 예보모형에 관한 연구 (A Study on Statistical Forecasting Models of PM10 in Pohang Region by the Variable Transformation)

  • 이영섭;김현구;박종석;김희경
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.614-626
    • /
    • 2006
  • Using the data of three environmental monitoring sites in Pohang area(KME112, KME113, and KME114), statistical forecasting models of the daily maximum and mean values of PM10 have been developed. Since the distributions of the daily maximum and mean PM10 values are skewed, which are similar to the Weibull distribution, these values were log-transformed to increase prediction accuracy by approximating the normal distribution. Three statistical forecasting models, which are regression, neural networks(NN) and support vector regression(SVR), were built using the log-transformed response variables, i.e., log(max(PM10)) or log(mean (PM10)). Also, the forecasting models were validated by the measure of RMSE, CORR, and IOA for the model comparison and accuracy. The improvement rate of IOA before and after the log-transformation in the daily maximum PM10 prediction was 12.7% for the regression and 22.5% for NN. In particular, 42.7% was improved for SVR method. In the case of the daily mean PM10 prediction, IOA value was improved by 5.1% for regression, 6.5% for NN, and 6.3% for SVR method. As a conclusion, SVR method was found to be performed better than the other methods in the point of the model accuracy and fitness views.

공간시계열모형의 결측치 추정방법 비교 (The Comparison of Imputation Methods in Space Time Series Data with Missing Values)

  • 이성덕;김덕기
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.263-273
    • /
    • 2010
  • 시계열의 결측값은 미지의 모수 또는 확률변수로 취급할 수 있으며 이에 따른 최대가능도방법과 확률변수방법에 의해 결측치를 추정할수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 기존에는 ARMA모형만을 고려하였는데 이를 확장하여 공간시계열모형인 STAR모형에 적용하여 두 가지 추정방법을 이용해 결측값의 추정 정밀도를 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001~2009년 동안의 월별 Mumps 자료를 이용하여 두 가지 추정방법의 추정 정밀도와 예측정확도를 비교하였다.

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

신경망 모델을 이용한 적도 태평양 표층 수온 예측 (Forecasting the Sea Surface Temperature in the Tropical Pacific by Neural Network Model)

  • 장유순;이다운;서장원;윤용훈
    • 한국지구과학회지
    • /
    • 제26권3호
    • /
    • pp.268-275
    • /
    • 2005
  • 대표적인 엘니뇨 지수인 태평양 Nino 해역의 표층 수온을 예측하기 위해 비선형 통계모델 중의 하나인 신경망 기법을 적용하였다. 신경망 모델 학습 과정의 입력 자료로 1951년부터 1993년까지의 태평양 해역$(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ NCEP/NCAR의 재분석 표층 수온 편차의 경험적 직교함수 7개 주모드를 사용하였고, 그 중 1994년부터 2003년까지의 10년 결과를 분석하였다. 모든 해역에서의 9개월까지의 신경망 모델의 예측력은 비교적 우수하였으며, 특히 1997년과 1998년의 강한 엘니뇨의 발달 및 소멸도 잘 예측함을 확인할 수 있었다. 해역별로는 Nino3 지역의 예측성능이 가장 높았으며, 9개월 이후부터는 그 예측력이 급격히 감소하였다. 한편 지역적인 영향이 커 예측력이 낮은 동태평양 연안의 Nino1+2 지역은 9개월 이후에도 예측력의 감소가 관찰되지 않았다.

로버스트 추정법을 이용한 자기상관회귀모형에서의 특이치 검출 (Outlier Detection of Autoregressive Models Using Robust Regression Estimators)

  • 이동희;박유성;김기환
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.305-317
    • /
    • 2006
  • 시계열 자료에서의 특이치, 특히 이 가운데 가법적 특이치가 모형의 식별, 모수의 추정 및 예측과 관련된 분석 전과정을 왜곡하는 것은 잘 알려져 있다. 그러나 특이치가 다수 발생하는 경우, 특히 연속적으로 집단을 이루어 발생할 때 대부분 특이치 검출방법은 가면화효과와 수렁화효과때문에 이들을 정확히 판별하지 못한다. 본 논문에서는 p차 자기상관회귀모형에 대한 고붕괴점 회귀추정량을 이용한 양방향 로버스트 필터방법을 제안했다. 실제 사례와 모의실험을 통해 제안한 방법이 매우 정확하게 시계열 자료에 포함된 특이치들을 검출하고 있음을 확인할 수 있다.

Prediction of compressive strength of sustainable concrete using machine learning tools

  • Lokesh Choudhary;Vaishali Sahu;Archanaa Dongre;Aman Garg
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.137-145
    • /
    • 2024
  • The technique of experimentally determining concrete's compressive strength for a given mix design is time-consuming and difficult. The goal of the current work is to propose a best working predictive model based on different machine learning algorithms such as Gradient Boosting Machine (GBM), Stacked Ensemble (SE), Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), and Deep Learning (DL) that can forecast the compressive strength of ternary geopolymer concrete mix without carrying out any experimental procedure. A geopolymer mix uses supplementary cementitious materials obtained as industrial by-products instead of cement. The input variables used for assessing the best machine learning algorithm not only include individual ingredient quantities, but molarity of the alkali activator and age of testing as well. Myriad statistical parameters used to measure the effectiveness of the models in forecasting the compressive strength of ternary geopolymer concrete mix, it has been found that GBM performs better than all other algorithms. A sensitivity analysis carried out towards the end of the study suggests that GBM model predicts results close to the experimental conditions with an accuracy between 95.6 % to 98.2 % for testing and training datasets.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.