• Title/Summary/Keyword: statistical forecast model

Search Result 254, Processing Time 0.026 seconds

A comparison of deep-learning models to the forecast of the daily solar flare occurrence using various solar images

  • Shin, Seulki;Moon, Yong-Jae;Chu, Hyoungseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2017
  • As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.

  • PDF

Predictive Modeling of River Water Quality Factors Using Artificial Neural Network Technique - Focusing on BOD and DO- (인공신경망기법을 이용한 하천수질인자의 예측모델링 - BOD와 DO를 중심으로-)

  • 조현경
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2000
  • This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju q and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, CO discharge and precipitation. As a result, it showed that method III of three methods was suitable more han other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

Nonlinearities and Forecasting in the Economic Time Series

  • Lee, Woo-Rhee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.931-954
    • /
    • 2003
  • It is widely recognized that economic time series involved not only the linearities but also the non-linearities. In this paper, when the economic time series data have the nonlinear characteristics we propose the forecasts method using combinations of both forecasts from linear and nonlinear models. In empirical study, we compare the forecasting performance of 4 exchange rates models(AR, GARCH, AR+GARCH, Bilinear model) and combination of these forecasts for dairly Won/Dollar exchange rates returns. The combination method is selected by the estimated individual forecast errors using Monte Carlo simulations. And this study shows that the combined forecasts using unrestricted least squares method is performed substantially better than any other combined forecasts or individual forecasts.

An Empirical Investigation on the Interactions of Foreign Investments, Stock Returns and Foreign Exchange Rates

  • Kim, Yoon-Tae;Lee, Kyu-Seok;Shin, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.141-154
    • /
    • 2002
  • Foreign investors'shares and their influences on the Korean stock market have never been larger and greater before since the market was completely open to foreign investors in 1992 Quantitatively and qualitatively as well, as a result, changes in the patterns of foreign investments have caused enormous effects on the interactions of major macroeconomic indices of the Korean economy. This paper is intended to investigate the causal relations of the four variables, foreigners'buy-sell ratios, stock returns, ₩/$ exchange rates and $\yen$/$ exchange rates, over the two time periods of the pre-IMF (1996.1.1-1997.8.15) and the post-IMF (1997.8.16-2000.6.15) based on the daily data of the variables. Granger Causality Test, Forecast Error Variance Decomposition(FEVD) using VAR model and Impulse Response Function were implemented for the empirical analysis.

Forecasting realized volatility using data normalization and recurrent neural network

  • Yoonjoo Lee;Dong Wan Shin;Ji Eun Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.105-127
    • /
    • 2024
  • We propose recurrent neural network (RNN) methods for forecasting realized volatility (RV). The data are RVs of ten major stock price indices, four from the US, and six from the EU. Forecasts are made for relative ratio of adjacent RVs instead of the RV itself in order to avoid the out-of-scale issue. Forecasts of RV ratios distribution are first constructed from which those of RVs are computed which are shown to be better than forecasts constructed directly from RV. The apparent asymmetry of RV ratio is addressed by the Piecewise Min-max (PM) normalization. The serial dependence of the ratio data renders us to consider two architectures, long short-term memory (LSTM) and gated recurrent unit (GRU). The hyperparameters of LSTM and GRU are tuned by the nested cross validation. The RNN forecast with the PM normalization and ratio transformation is shown to outperform other forecasts by other RNN models and by benchmarking models of the AR model, the support vector machine (SVM), the deep neural network (DNN), and the convolutional neural network (CNN).

Prediction model analysis of 2010 South Africa World Cup (2010 남아공 월드컵 축구 예측모형 분석)

  • Hong, Chong-Sun;Jung, Min-Sub;Lee, Jae-Hyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1137-1146
    • /
    • 2010
  • There are a lot of methods to predict the result of a game and many forecasting researches have been studied. Among many methods, if a statistical model including some realistic random variables is used to forecast, more accurate prediction could be expected than any others. In this work, Bradley-Terry model is considered to predict results of 2010 South Africa World Cup games via paired comparison method. This prediction model includes some random variables which affect the results of games. The worth parameters for each country in this model are convergence values obtained by using Newton-Raphson algorithm. With this model, we can forecast top 16 among 32 countries and up to who will win the victory. Final results of 2010 South Africa World Cup games are compared with this prediction and discuss further works.

A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy (단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구)

  • Seo, Myeong-Yu;Rhee, Jong-Tae
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

Forecasting of Pine-Mushroom Yield Using the Conditional Autoregressive Model (조건부 자기회귀모형을 이용한 송이버섯 생산량 예측)

  • 이진희;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.307-320
    • /
    • 2000
  • It has been studied to find relationships between pine-mushroom yield and climatic factors. Recently, Hyun-Park, Key-I! shin and Hyun-Joong Kim(1998) investigated relationships between pine-mushroom yield and climatic factors by autoregression model. In this paper, to improve the forecast we suggest the conditional autoregression model using probability of existing pine-mushroom production.

  • PDF