Proceedings of the Korean Operations and Management Science Society Conference
/
1996.10a
/
pp.139-145
/
1996
A forecast on the past output data sets of small bar steels is very important information to make a decision on the future production quantities. In many cases, however, it has been mainly determined by experience (or rule of thumb). In this paper, past basic data sets of each small bar steels are statistically analyzed by some graphical and statistical forecasting methods. This work is mainly done by SAS. Among various quantitative forecasting methods in SAS, STEPAR forecasting method was best performed to the above data sets. By the method, the future production quantities of each small bar steels are forecasted. As a result of this statistical analysis, 95% confidence intervals for future forecast quantities are very wide. To improve this problem, a suitable systematic database system, integrated management system of demand-production-inventory and integrated computer system should be required.
Transactions of the Korean Society of Mechanical Engineers
/
v.18
no.2
/
pp.323-338
/
1994
This paper outlines a framework for performing intelligent sensor validation for a diagnostic expert system while reasoning under uncertainty. The emphasis is on the algorithmic preprocess technique. A companion paper focusses on heuristic post-processing. Sensor validation plays a vital role in the ability of the overall system to correctly detemine the state of a plant monitored by imperfect sensors. Especially, several theoretical developments were made in understanding uncertain sensory data in statistical aspect. Uncertain information in sensory values is represented through probability assignments on three discrete states, "high", "normal", and "low", and additional sensor confidence measures in Algorithmic Sv.Upper and lower warning limits are generated from the historical learning sets, which represents the borderlines for heat rate degradation generated in the Algorithmic SV initiates a historic data base for better reference in future use. All the information generated in the Algorithmic SV initiate a session to differentiate the sensor fault from the process fault and to make an inference on the system performance. This framework for a diagnostic expert system with sensor validation and reasonig under uncertainty applies in HEATXPRT$^{TM}$, a data-driven on-line expert system for diagnosing heat rate degradation problems in fossil power plants.
International Journal of Aeronautical and Space Sciences
/
v.16
no.3
/
pp.360-369
/
2015
A methodology for determining the design allowables of composite laminates by using lamina level test data and finite element analysis (FEA) is proposed and verified in this paper. An existing method that yields the laminate design allowables by using the complete test results for laminates was improved to reduce the expensive and time-consuming tests. Input property samples for FEA were generated after considering the statistical distribution characteristics of lamina level test data., and design allowables were derived from several FEA analyses of laminates. To apply and verify the proposed method, Hexcel 8552 IM7 test data were used. For both un-notched and open-hole laminate configurations, it was found that the design allowables obtained from the analysis correctly predicted the laminate test data within the confidence interval. The potential of the present simulation to substitute the laminate tests was demonstrated well.
Communications for Statistical Applications and Methods
/
v.21
no.6
/
pp.487-500
/
2014
A new method to calculate the transmittable prevalence of an epidemic disease is proposed based on a back-calculation formula. We calculated the probabilities of reactivation and of parasitemia as well as transmittable prevalence (the number of persons with parasitemia in the incubation period) of malaria in South Korea using incidence of 12 years(2001-2012). For this computation, a new probability function of transmittable condition is obtained. The probability of reactivation is estimated by the least squares method for the back-calculated longterm incubation period. The probability of parasitemia is calculated by a convolution of the survival function of the short-term incubation function and the probability of reactivation. Transmittable prevalence is computed by a convolution of the infected numbers and the probabilities of transmission. Confidence intervals are calculated using the parametric bootstrap method. The method proposed is applicable to other epidemic diseases in other countries where incidence and a long incubation period are available. We found the estimated transmittable prevalence in South Korea was concentrated in the summer with 276 cases on a peak at the $31^{st}$ week and with about a 60% reduction in the peak from the naive prevalence. The statistics of transmittable prevalence can be used for malaria prevention programs and to select blood transfusion donors.
This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.
The purpose of this study is to empirically analyze the productivity change of the 10 Single PPM Certification Company in the 3 Industry(Electronics, Motor-Parts, Machines). In this study, Productivity change over the time in Korean small and medium sized firms in the 3 industries by the bootstrapped Malmquist Productivity Index(MPI). The traditional Malmquist Productivity Index(MPI) and Data Envelopment Analysis(DEA) Models have not only bias but also lack statistical confidence intervals. they could lead to wrong evaluations of the efficiency and productivity scores. In this paper, DEA and a MPI are combined with a bootstrap method in order to provide statistical inferences that analyze the performance of the Single PPM Certification Company. The data cover the period between 2004 and 2007. The result of this paper reveals : 1) The Electronics Industry had productivity effect of 17%, but there was not direct effect for other Industries(Motor-Parts, Machines). 2) average productivity Progress of the 7DMU(Electronics), 1DMU(Motor-Parts) and none(Machines).
Kim, Dong-Yun;Han, Sung-Min;Youngblood, Marston Jr.
Communications for Statistical Applications and Methods
/
v.25
no.5
/
pp.501-512
/
2018
We propose Sequential Patient Recruitment Monitoring (SPRM), a new monitoring procedure for patient recruitment in a clinical trial. Based on the sequential probability ratio test using improved stopping boundaries by Woodroofe, the method allows for continuous monitoring of the rate of enrollment. It gives an early warning when the recruitment is unlikely to achieve the target enrollment. The packet data approach combined with the Central Limit Theorem makes the method robust to the distribution of the recruitment entry pattern. A straightforward application of the counting process framework can be used to estimate the probability to achieve the target enrollment under the assumption that the current trend continues. The required extension of the recruitment period can also be derived for a given confidence level. SPRM is a new, continuous patient recruitment monitoring tool that provides an opportunity for corrective action in a timely manner. It is suitable for the modern, centralized data management environment and requires minimal effort to maintain. We illustrate this method using real data from two well-known, multicenter, phase III clinical trials.
This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.
Proceedings of the Korean Society of Toxicology Conference
/
2006.11a
/
pp.80-86
/
2006
Bioequivalence is a term in pharmacokinetics used to access the expected in vivo biological equivalence of two proprietary preparations of a drug. Bioequivalence studies are usually performed for generic drugs. Two pharmaceutical products are bioequivalent if they are pharmaceutically equivalent and their bioavailabilioes after administration in the same molar dose are similar. Bioequivalence is usually accessed by single dose in vivo studies in healthy volunteers and the reference product is usually the innovator product that is marketed. Regulatory definition of bioequivalence is based on the statistical analysis of thebioavailability of the reference and test product. In general, two products are evaluated as bioequivalent if the 90% confidence interval of the relative mean Cmaxand AUC of the test to reference product are within 80.00% to 125.00% in the fasting state. Key process in bioequivalence study is development and validation of bioanalytical method, determination of the drug concentration in the biosamples (usually plasma or serum) obtained from volunteers, calculation of the pharmacokinetic parameters and statistical analysis of the pharmacokinetic parameters. Although current guidelines and regulations do not require the bioequivalence studies to be done under good laboratory practice (CLP), the issues to perform the bioequivalence studies under GLP environment is emerged both from the regulatory and industry side. GLP perspectives of bioequivalence studiesare needed to be discussed in respect to achieve quality assurance in bioequivalence studies.
Proceedings of the Korean Radioactive Waste Society Conference
/
2005.06a
/
pp.151-157
/
2005
For the treatment of regulatory clearance of the soils, a procedure for the radionuclides and radioactivity concentration analysis is under development. A strategy for soil sampling including random sampling after homogenization and standardization was set up. Statistical representativeness is considered for not only sampling strategy but also sample size. In this study, designed sample size was designed with confidence interval and error bound of soil using the pilot samples which were taken following the sampling strategy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.