• Title/Summary/Keyword: static testing

Search Result 500, Processing Time 0.03 seconds

Development of Fagan Inspection Tool for Railway System Vital Software (철도시스템 바이탈 소프트웨어 테스팅을 위한 Fagan Inspection 지원도구의 개발)

  • Hwang, Jong-Gyu;Jo, Hyun-Jeong;Jeong, Ui-Jing;Shin, Kyeung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.2056-2062
    • /
    • 2009
  • Recent advances in computer technology have brought more dependence on software to train control systems. Hence, the safety assurance of the vital software running on the railway system is very critical task and yet, not many works have been done. While much efforts have been reported to improve electronic hardware's safety, not so much systematic approaches to evaluate software's safety, especially for the vital software running on board train controllers. In this paper, we have developed the static software testing tool for railway signaling, especially Fagan Inspection supporting tool. This static testing tool for railway signaling can be utilized at the assessment phase, and also usefully at the software development stage also. It is anticipated that it will be greatly helpful for the evaluation on the software for railway signalling system.

  • PDF

A Study on The Load Test Method and Result For AL Car Body of LRT (경량전철차량 알루미늄 구조체 하중시험방법 연구 및 결과고찰)

  • Kim, Won-Kyung;Won, Si-Tae;Jeon, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.986-995
    • /
    • 2008
  • This study introduces the testing results of the AL car body which is applied to LRT. The LRT car body is made of aluminum structure materials like a sandwich panel. The static load test was performed to evaluate the structural characteristic and stability of the AL car body. Considering the vertical, compressive, twisting load and 3-point supporting, Bend natural frequency Measurement, Twist natural frequency Measurement type as a testing terms, the structural stability of a car body was evaluated.

  • PDF

A Study on Comparison Of The load Test Results Of AL Car Body Welding Method For Rolling Stock (철도차량 알루미늄 차체 용접방법에 따른 하중시험결과 비교 고찰)

  • Kim, Weon-Kyong;Won, Si-Tae;Jeon, Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1604-1612
    • /
    • 2009
  • This study introduces comparison the testing results of the AL car body which is applied to FSW and GMAW welding method. The car body is made of aluminum structure materials like a sandwich panel. The static load test was performed to evaluate the structural characteristic and stability of the AL car body. Considering the vertical, compressive, twisting load and 3-point supporting, Bend natural frequency Measurement, Twist natural frequency Measurement type as a testing terms, the structural stability of a car body was evaluated.

  • PDF

Experimental validation of dynamic based damage locating indices in RC structures

  • Fayyadh, Moatasem M.;Razak, Hashim Abdul
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.181-206
    • /
    • 2022
  • This paper presents experimental modal analysis and static load testing results to validate the accuracy of dynamic parameters-based damage locating indices in RC structures. The study investigates the accuracy of different dynamic-based damage locating indices compared to observed crack patterns from static load tests and how different damage levels and scenarios impact them. The damage locating indices based on mode shape curvature and mode shape fourth derivate in their original forms were found to show anomalies along the beam length and at the supports. The modified forms of these indices show higher sensitivity in locating single and multi-cracks at different damage scenarios. The proposed stiffness reduction index shows good sensitivity in detecting single and multi-cracks. The proposed anomalies elimination procedure helps to remove the anomalies along the beam length. Also, the adoption of the proposed weighting method averaging procedure and normalization procedure help to draw the overall crack pattern based on the adopted set of modes.

Determination of True Resistance from Load Transfer Test Performed on a PHC Pile (PHC 말뚝의 하중전이실험을 통한 참 지지력의 산정)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Dzung, N.T.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.113-122
    • /
    • 2006
  • Although a number of static pile load tests have been performed in this country, re-consideration on the interpretation and loading method is needed, because of their less usefulness in practice. For this study, a static loading testing was performed for a long instrumented PHC pile, which was installed in sand layer overlying thick soft clay. The shaft resistance of the pile had been monitored for a long time after installation, and then the static load testing was performed by the quick load test, unlike the recent Korean practice. Using the measured data, the elastic modulus of pile, residual stress and true resistance on the pile were determined. In the event, it was found that the residual stress on the pile, which remained prior to the static loading, significantly affects the shaft and toe resistances. Also, it was realized that the setup effect for the long pile is significant.

Fast built-in current sensor for $\textrm{I}_{DDQ}$ testing ($\textrm{I}_{DDQ}$ 테스팅을 위한 빠른 재장형 전류감지기)

  • 임창용;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.811-814
    • /
    • 1998
  • REcent research about current testing($\textrm{I}_{DDQ}$ testing) has been emphasizing that $\textrm{I}_{DDQ}$ testing in addition to the logical voltage testing is necessary to increase the fault coverage. The $\textrm{I}_{DDQ}$. testing can detect physical faults other than the classical stuck-at type fault, which affect reliability. One of the most critical issues in the $\textrm{I}_{DDQ}$ testing is to insert a built-in current sensor (BICS) that can detect abnormal static currents from the power supply or to the ground. This paper presents a new BICS for internal current testing for large CMOS logic circuits. The proposed BICS uses a single phase clock to minimize the hardware overhead. It detects faulty current flowing and converts it into a corresponding logic voltage level to make converts it into a corresponding logic voltage level to make it possible to use the conventional voltage testing techniqeus. By using current mirroring technique, the proposed BICS can work at very high speed. Because the proposed BICS almost does not affects normal operation of CUT(circuit under test), it can be used to a very large circuit without circuit partitioning. By altenating the operational modes, a circuit can be $\textrm{I}_{DDQ}$-tested as a kind of self-testing fashion by using the proposed BICS.

  • PDF

Research on the Effects of MAAB Style Guidelines for Weapon System Embedded Software Reliability Improvement (무기체계 내장형 소프트웨어 신뢰성 향상을 위한 MAAB 스타일 가이드라인 영향성 연구)

  • Kim, Yeon-Gyun;Yoon, Hyung-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.213-222
    • /
    • 2014
  • In this paper, we introduce that MAAB style guideline has effects on the codes generated from Simulink models for static and dynamic software testing, when weapon system embedded software design and implementation are performed using the model based method. As showing the effects, MAAB guideline is helpful for defect prevention related with coding rules and run time errors associated with the DAPA weapon system embedded software guide. Thus, we check related items between MAAB and DAPA software reliability testing including static and dynamic analysis. And then we propose the criterion to select proper items from MAAB for DAPA guideline and show how to verify the relationship and the effects on reliability of models in Simulink. In addition, we show the needs for clear logics in conditional block models or statements and simple complexity models for Simulink model based design.

Study on Reliability Assessment for the Medical Device Software from the Viewpoint of Functional Safety (기능 안전 관점에서의 의료기기 소프트웨어 신뢰성 평가 방법에 관한 연구)

  • Kim, Sung Min;Ko, Byeonggak;Do, Gyeong-Hun;Kim, Hye Jin;Ham, Jung-Keol
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.216-223
    • /
    • 2016
  • Purpose: This paper suggests the procedure to enhance the reliability of the software of the medical device that is to cure, treat, diagnose, and prevent a disease or an abnormal health conditions. Methods: After test requirements are classified by the software requirements specification for safety and backgrounds, reliability assessment methods are suggested. Results: Verification and validation for function and safety can be performed whether the medical device software are implemented as intended. Conclusion: Procedure on the static analysis, unit test, integration test, and system test are provided for the medical device software.

Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS

  • Xiaoping Zou;Gongxing Yan;Wangming Wu;Wenjie Yang;Weiwei Shi;Yuhusun Sun
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.485-495
    • /
    • 2023
  • Bending static and stress investigation of a microplate of piezoelectric/piezomagnetic material subjected to combined multifield loading. Shear deformable as well as thickness stretched model is used for derivation of the kinematic relations. Multi field governing equations are derived analytically through principle of virtual work. the results are analytically obtained analytically including magnetic/electric potentials, displacement and stress components with variation in multifield loading parameters.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.