• Title/Summary/Keyword: static studies

Search Result 927, Processing Time 0.023 seconds

Alteration of the Static Posture of Spine under Different Types and Amounts of Loading (가방 하중의 크기와 방식에 따른 척추 정적 자세의 변화)

  • Park, Yong-Hyun;Kim, Young-Kwan;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • The aim of this study was to investigate the alteration of lumbar spine and trunk postures on different load-carrying types and amounts under static loading. Two load-carrying types(unilateral carrying: UC vs. bilateral carrying: BC) and four different loads(0, 5, 10, and 15 kg) were randomly tested in this study. Carrying a heavy bag would affect human body posture, specifically lumbar spine curvature, which is considered as one of sources of back problems. Previous studies have not paid attention to the approach of the multisegment model of the lumbar spine and trunk. This study separated two compartments of trunk segment(the lumbar and thorax) in the analysis. The multisegment model of the lumbar spine in addition to Helen-Hayes marker set was used. Eight motion analysis cameras and a force plate were utilized. Ten male subjects(mean mass, $70.6{\pm}3.97$ kg; mean height, $178{\pm}4.18$ m) having no musculoskeletal disease participated in this study. We analyzed trunk angles in three anatomical planes and the spinal curvature in sagittal and frontal planes. Increased loading in both UC and BC significantly resulted in increases in trunk forward lean but only UC induced increases in trunk lateral lean. In addition, increased loading in BC produced flatten lumbar curvature in sagittal plane. As far as coupling motion, subjects tended to use axial rotation of the lumbar spine in transverse plane in response to increased UC loading. Finally, it is concluded that the increased static loading in UC rather than in BC tends to causes combined alterations of the spinal postures(sagittal and transverse planes together), which would be vulnerable to improper mechanical stresses on the spine.

A Study on The Decision of Allowable Bearing Capacity of PHC Piles (PHC Pile의 허용지지력 결정에 관한 연구)

  • 안종필;박주원;이광용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.73-80
    • /
    • 1999
  • Analytical studies on piles so far have been directed toward prediction of bearing capacity under vertical loads. Various static and dynamic formulas have been used in predicting the ultimate bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the predicted values with the pile load test measurements. Accordingly, by means of the ultimate load from the data measured by the actual field load tests of PHC piles, safety factors were compared and analyzed static and dynamic formula methods applying to 4 different sites. As a result, the safety factor by Meyerhof formula method indicates 3.0 and the safety factor by Hiley formula method indicates 5.0.

  • PDF

A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability (패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망)

  • Jeong, Nak-U;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.401-408
    • /
    • 1997
  • Human gets almist all of his knoweledge from the recognition and the accumulation of input patterns,image or sound,the he gets theough his eyes and through his ears.Among these means,his chracter recognition,an ability that allows him to recognize characters and understand their meanings through visual information, is now applied to a pattern recognition system using neural network in computer. Recurrent neural network is one of those models that reuse the output value in neural network learning.Recently many studies try to apply this recurrent neural network to the classification of static patterns like off-line handwritten characters. But most of their efforts are not so drrdtive until now.This stusy suggests a new type of recurrent neural network for an deedctive classification of the static patterns such as off-line handwritten chracters.Using the new J-E(Jordan-Elman)neural network model that enlarges and combines Jordan Model and Elman Model,this new type is better than those of before in recobnizing the static patterms such as figures and handwritten-characters.

  • PDF

A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure (초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.671-686
    • /
    • 2018
  • Recently, earthquakes have occurred near Gyeongju and Pohang and the social demands are thus being increased for seismic analysis of tall buildings and their adjacent underground structure in big cities. Since most of the previous seismic analysis studies considered a tall building and an adjacent underground structure separately, however, they lack the analysis on dynamic mutual behavior between two structures. Therefore, in this study, a dynamic analysis with a full soil-structure interaction was performed for a complex underground facility with a tall building and an adjacent underground structure constructed on the bedrock with a surface layer. To improve the reliability, in particular, a pseudo-static analysis was performed and compared with the dynamic analysis results. It is comprehensively concluded that the analysis of adjacent underground structures being considered is more conservative than that of not considered.

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates

  • Abbas, Soufiane;Benguediab, Soumia;Draiche, Kada;Bakora, Ahmed;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.365-380
    • /
    • 2020
  • The focus of this paper is to develop an analytical approach based on an efficient shear deformation theory with stretching effect for bending stress analysis of cross-ply laminated composite plates subjected to transverse parabolic load and line load by using a new kinematic model, in which the axial displacements involve an undetermined integral component in order to reduce the number of unknowns and a sinusoidal function in terms of the thickness coordinate to include the effect of transverse shear deformation. The present theory contains only five unknowns and satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without using any shear correction factors. The governing differential equations and its boundary conditions are derived by employing the static version of principle of virtual work. Closed-form solutions for simply supported cross-ply laminated plates are obtained applying Navier's solution technique, and the numerical case studies are compared with the theoretical results to verify the utility of the proposed model. Lastly, it can be seen that the present outlined theory is more accurate and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated composite plates.

The Immediate Effects of Hamstring Eccentric Exercise and Static Stretching on Trunk Forward Bending (즉각적인 뒤넙다리근 편심성 운동과 정적 스트레칭이 몸통 전방 굽힘에 미치는 영향)

  • Kim, Tae-eun;Choi, Bo-ram
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.32-41
    • /
    • 2019
  • Background: Limitations in hip flexion caused by tight hamstrings lead to excessive lumbar flexion and low back pain. Accordingly, many studies have examined how to stretch the hamstring muscle. However, no study has focused on the effect of hamstring eccentric exercise for tight hamstrings on trunk forward bending. Objects: We compared the short-term effect of hamstring eccentric exercise (HEE) and hamstring static stretching (HSS) on trunk forward bending in individuals with tight hamstrings. Methods: Thirty individuals with tight hamstrings participated in the study. The subjects were randomly allocated to either a HEE or HSS group. To determine whether the hamstrings were tight, the active knee extension (AKE) test was performed, and the degree of hip flexion was measured. To assess trunk forward bending, subjects performed the fingertip to floor (FTF) and modified modified Schober tests, and the degree of trunk forward bending was measured using an inclinometer. We used paired t-tests to compare the values before and after exercise in each group and independent t-tests to compare the two groups on various measures Results: The FTF test results were improved significantly after the exercise in both groups, and AKE for both legs increased significantly in both groups. There was no significant difference in the hip angles, mmS test results, or degree of trunk forward bending between groups after the exercise. No test results differed significantly between the two groups at baseline or after the exercise. Both groups increased hamstring flexibility and trunk forward bending. Conclusion: HSS and the HEE groups increased hamstring flexibility and trunk forward bending. However, HEE has additional benefits, such as injury prevention and muscle strengthening.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

Comparison of the Effects of Pelvic Compression Using Instruments on Trunk Muscle Endurance and Balance Ability in Subjects in Their Twenties With or Without Low Back Pain (기구를 이용한 골반 압박이 20대의 요통 경험자와 비경험자의 체간 근지구력과 균형 능력에 미치는 영향 비교)

  • Chung, Suh-young;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.156-164
    • /
    • 2022
  • Background: Low back pain (LBP) is a representative disease, and LBP is characterized by muscle dysfunction that provides stability to the lumbar spine. This causes physical functional problems such as decreased posture control ability by reducing the muscular endurance and balance of the lumbar spine. Pelvic compression using instruments, which has been used during recent stabilization exercises, focuses on the anterior superior iliac spine of the pelvis and puts pressure on the sacroiliac joint during exercise, making the pelvis more symmetrical and stable. Currently, research has been actively conducted on the use of pelvic compression belts and non-elastic pelvic belts; however, few studies have conducted research on the application effect of pelvic compression using instruments. Objects: This study aimed to investigate whether there is a difference in trunk muscular endurance and dynamic and static balance ability levels by applying pelvic stabilization through a pelvic compression device between the LBP group and the non-LBP group. Methods: Thirty-nine subjects currently enrolled in Daejeon University were divided into 20 subjects with LBP group and 19 subjects without LBP (NLBP group), and the groups were compared with and without pelvic compression. The trunk muscular endurance test was performed with 4 movements, the dynamic balance test was performed using a Y-balance test, and the static balance test was performed using a Wii balance board. Results: There was a significant difference the LBP group and the NLBP group after pelvic compression was applied to all tests (p < 0.05). In the static and dynamic balance ability test after pelvic compression was applied, there was a significant difference in the LBP group than in the NLBP group (p < 0.05). Conclusion: These results show that pelvic compression using instruments has a positive effect on both those with and without LBP and that it has a greater impact on balance ability when applied to those with LBP.