• Title/Summary/Keyword: static structural analysis

Search Result 1,507, Processing Time 0.03 seconds

Structural Stability Analysis of Connectors for an Electric Handbike (휠체어 전동주행 보조기기용 커넥터의 구조안정성 해석)

  • Seo, Han Wool;Kim, Dae Dong;Ko, Cheol Woong;Lee, Joon Hmm;Bae, Tae Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.491-496
    • /
    • 2015
  • Electric handbike can be easily detachable to various sizes of manual wheelchair and the elderly and people with disabilities can use them easily. Therefore, connectors used for coupling between the handbike and manual wheelchair must secure structural stability for occupant safety. However, related research is rare. The aim of this study is to find the connector with highly structural stability by comparing static and dynamic mechanical characteristics among three typical connectors(a snatch lock, a slide latch, and a fastener) by computational simulations. To perform static and dynamic simulation, we referred to durability test based on Korean Standards and then calculated mechanical stresses in connectors. The results showed that the snatch lock addressed the lowest von-mises stress under the same mechanical condition. Therefore when using the combination of a handbike and a wheelchair, we concluded that the snatch lock is considered as the structurally stable connector to structural stability and usability.

An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design (동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰)

  • Lee Hyun-Ah;Kim Yong-Il;Kang Byung-Soo;Kim Joo-Sung;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology (전산유체/전산구조 연계 방법을 사용한 항공기날개의 정적 공탄성 해석)

  • Choi, Dong-Soo;Jun, Sang-Ook;Kim, Byung-Kon;Park, Soo-Hyun;Lee, Dong-Ho;Lee, Kyung-Tae;Jun, Seung-Moon;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-294
    • /
    • 2007
  • A static aeroelastic analysis for supersonic aircraft wing equipped with external store under the wing lower surface is performed using computational fluid dynamics (CFD) and computational structural technology(CST) coupling methodology. Two mapping algorithms, which are the pressure mapping algorithm and the displacement mapping algorithm, are used for CFD/CST coupling. A three-dimensional unstructured Euler code and finite element analysis program are used to calculate the flow properties and the structural displacements, respectively. The coupling procedure is repeated in an iterative manner until a specified convergence criterion is satisfied. Static aeroelastic analysis for a typical supersonic flight wing is performed and final converged wing configuration is obtained after several iterations.

A Experimental Study on the Structural Performance of Precast Bracket under Precast Road Deck Slab of Double Deck Tunnel (복층터널에서 도로용 중간슬래브와 연결되는 조립식 브라켓의 구조성능에 관한 실험연구)

  • Kim, Bo Yeon;Lee, Doo Sung;Kim, Tae Kyun;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.647-657
    • /
    • 2017
  • The main purpose of this study is to investigate the static & dynamic behavior of a precast bracket under precast road deck slab of double deck tunnel. In order to improve the construction speed, the field prefabricated bracket to connect the intermediate slab to the precast shield tunnel lining structure has been developed in the 'SPC (Steel Precast Concrete) bracket'. The experiments were performed for the full scale model in order to evaluate the performance of the 'SPC bracket', the structural stability was verified through the FEM analysis. The result of static loading test, no deformations or cracks of the bracket undergo the ultimate load was investigated. In addition, no pulling or deformation of the chemical anchor for fixing the bracket was measured. As a result of dynamic loading test, it was investigated that there is no problem in the chemical anchor for fixing the bracket. FEM analysis showed similar behavior to static load test and it was determined that there is no problem in serviceability and structural safety.

An Improved Model for Structural Analysis of Cable-stayed Bridges (사장교의 구조해석을 위한 개선된 해석모델)

  • 최창근;김선훈;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.69-76
    • /
    • 2000
  • In this study, an improved analysis model for the more efficient and accurate structural analysis of cable-stayed bridges is presented. In this model, beam elements, of which stability functions are stabilized by the use of Taylor's series expansions, are used to model space frame structures, and truss elements, of which equivalent elastic moduli are evaluated on the assumption that the deflected shape of a cable has a catenary function, are used to model cables. By using the proposed analysis model, nonlinear static analysis and natural vibration analysis of 2-dimensional and 3-dimensional cable-stayed bridges are carried out and are compared with the analysis results reported by other researchers.

  • PDF

Performance Evaluation of Seismic Stopper using Structural Analysis and AC156 Test Method

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Recently, studies have been actively conducted on seismic design and improvement of the seismic performance of bridges, buildings, factories, and plants. In particular, heavy items that are being manufactured or waiting to be shipped from factories (such as generators, engines, and boilers) must be equipped with seismic stoppers to prevent them from moving or falling during an earthquake. Seismic stoppers should be suitably determined by the size and weight of these heavy items; however, they have no general design standard. In this study, structural analyses and seismic tests were conducted to evaluate the performance of newly designed seismic stoppers. Structural analysis was performed on three stopper models to estimate the external load at which the yield stress of the material was not exceeded. Based on the analysis results, a seismic test of the stopper was carried out in accordance with the AC156 test method. Finally, product specifications for all three seismic stopper models were determined and their static/dynamic load performance was evaluated.

Mechanism Modeling and Structural Analysis of the Fuel Handling Machine in KALIMER Reactor (KALIMER 원자로 핵연료 교환기의 메커니즘 모델링 및 구조해석)

  • 김석훈;이재한
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.131-138
    • /
    • 2002
  • The fuel handling machine handles the core assembly in refueling period of the reactor, it is necessary to predict the motion and structural integrity of it. The kinetic analysis of the fuel handling machine was carried out for the refueling motion. The reaction forces at the joints of machine were calculated with IDEAS code considering the weight of the machine and the loading force of the core assembly, Also, the structural analysis for the machine modeled by lumped-mass and beam elements was performed by using ANSYS code. The stresses and deformations were calculated for the equivalent static force based on the kinetic analysis and the seismic loads. The calculated displacements and stresses are quite low compared with allowable limits.

  • PDF

A Structural Analysis of Underground Openings in Discontinuous Rock Masses (불연속면의 영향을 고려한 지하암반공동의 구조해석)

  • 김선훈;최규섭;김해홍;김진웅
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 1991
  • In order to predict properly the effects of ground motion associated with earthquakes on underground radioactive waste disposal facilities, an understanding of the structural behavior of an underground opening in discontinuous rock masses subjected to dynamic loadings is essential. This paper includes literature review on computational models for discontinuous rock masses and on mathematical models for the structural analysis of underground opening. Then, structural analyses of underground openings using the distinct element computer program written for the static and dynamic analysis of discontinuous rock masses have been performed.

  • PDF

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.

Object-Oriented Free Vibration Analysis of Plane Flamed Structures (평면 뼈대 구조물의 객체지향 자유진동해석)

  • 신영식;최희옥;서진극
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.61-68
    • /
    • 1993
  • A computer program for free vibration analysis of plane framed structures has been developed by object oriented programming technique using C" language. The object oriented programming concepts such as object, class, method and inheritance are represented. The static and free vibration analyses for framed structures were satisfactorily performed by this program which consists of TOP, VECTOR, MATRIX, STRU, GUI and other classes. Numerical test shows the validity and capability of the present study which can be expandable to develop a general purpose object oriented finite element analysis program of structures ,res ,

  • PDF