• Title/Summary/Keyword: static structural analysis

Search Result 1,507, Processing Time 0.032 seconds

Three-dimensional finite element static analysis and safety evaluation of attachable roadside barriers on bridges (탈·부착식 교량 방호울타리의 3차원 유한요소 정적해석 및 안전성 평가)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2414-2418
    • /
    • 2014
  • This study carried out three-dimensional finite element analysis and structural safety evaluation of attachable roadside barriers. The effects of diaphragm distance and the number of bolts on displacements and maximum stresses for various parameters are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of barriers using the LS-DYNA program is further extended to study static behaviors and structural safety of the barrier with module structures connected by anchor bolt inserted through concrete bridge decks. The numerical results for six parameters are verified by comparing different models with displacements and stress distribution occurred in the barrier and shows good structural performance.

Movement identification model of port container crane based on structural health monitoring system

  • Kaloop, Mosbeh R.;Sayed, Mohamed A.;Kim, Dookie;Kim, Eunsung
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.105-119
    • /
    • 2014
  • This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.

Structural Static Test of Pylon for External Attachment Separation Load (외부장착물 분리하중에 대한 파일런 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Hong, Seung-ho;Choi, Hyun-kyung;Cho, Sang-hwan;Park, Hyung-bae
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2022
  • The bomb rack unit (BRU) installed inside the pylon serves to fix external attachments such as external fuel tank or external weapon, and also serves to separate external attachments in case of emergency. In particular, the load generated when the external attachment is separated from the BRU is called the punching load. In this study, we present the results of a structural static test performed to verify the structural integrity of the pylon under the BRU punching condition acting on it. In the structural static test report, we present the implementation method for the separation load of the external attachment and the test profile for the BRU punching load condition, and compared the error between the load input signal and the feed-back signal to determine the appropriateness of load control in each test. Furthermore, we compared the strain results obtained in the numerical analysis and structural test at the main positions of the specimen. As a result, it was shown that the load of the actuators were properly controlled within the allowable error range in each test, and the numerical analysis effectively predicted the test result. Finally, through structural static tests conducted by design limit load and design ultimate load, we verified that the aircraft pylon dealt with in this study has sufficient structural strength for external attachment separation condition.

Static analysis of eddy current brake's frame for design evaluation (와전류 제동장치 프레임 설계검토를 위한 강도해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Lee, Byung-Hyun;Mantsch, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.98-103
    • /
    • 2002
  • In this paper, static analysis of eddy current brake's frame, which is one of key structural components of brake system for high speed train, was performed in order to evaluate the design by computer simulation. Calculation was carried out in general for the driving modes 'braking' and 'frame in upper position(Brakes inactive)'. Several yield stress load cases and fatigue load cases were analysed for each of the driving modes. The fatigue load resulting from the Multi Body System simulation was also taken into consideration. The simulation results shows that some of structural part should be improved for more increasing reliability of frame.

  • PDF

자전거 프레임 특정부분의 보강효과와 프레임에 미치는 응력과 변형 연구

  • Kim, Tae-Hun;Yang, Dong-Min;Ha, Yun-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.207-211
    • /
    • 2015
  • In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.

  • PDF

Structural behavior of precast concrete deck with ribbed loop joints in a composite bridge

  • Shin, Dong-Ho;Chung, Chul-Hun;Oh, Hyun-Chul;Park, Se-Jin;Kim, In-Gyu;Kim, Young-Jin;Byun, Tae-Kwan;Kang, Myoung-Gu
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.559-576
    • /
    • 2016
  • This study is intended to propose a precast bridge deck system, which has ribbed loop joints between the decks and lacks internal tendons to improve the workability of existing precast deck system. A composite bridge deck specimen was fabricated using the proposed precast deck system, and static and fatigue load tests were conducted to evaluate the structural behavior and the crack pattern of the deck. Leakage test of the deck joints was also conducted and finite element analysis was carried out to compare with the test results.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade (1.5kW급 풍력발전기용 블레이드의 구조해석 및 구조시험)

  • Kim, Hong-Kwan;Lee, Jang-Ho;Jang, Se-Myong;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • This paper describes the structural design and testing for 1.5kW class wind turbine composite blade. In order to calculate the equivalent material properties rule-of-mixture is applied. Lay-up sequence, ply thickness and ply angle are designed to satisfy the requirements for structural integrity. Structural analysis by using commercial software ABAQUS is performed to assess the static, buckling and vibration response. And to verify the structural analysis and design, the full scale structural test in flapwise direction was performed under single point loading according to loading conditions calculated by the aerodynamic analysis and Case H (Parked wind loading) in IEC 61400-2.

The Structural Analysis and Experimental Verification for the Next Generation High Speed EMU (분산형 고속전철의 하중조건에 따른 정적 하중시험 평가)

  • Choi, Jeong-Yong;Jeong, Won-Wha;Park, Geun-Soo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.307-313
    • /
    • 2011
  • Hyundai Rotem Company has designed and manufactured the next generation high speed EMU bodyshell (M3-car). Korean Railway Safety Law specifies the loads vehicle bodies shall be capable of withstanding, identifies what material data shall be used and presents the principles to be used for design verification by analysis. Therefore, in order to fulfill the structural requirements, Hyundai Rotem Company has carried out Finite Element Analysis (FEA) and static load test to verify whether the carbody structure has enough strength to withstand the loads specified by Korean Railway Safety Law. This research contains the results obtained by the FE analysis and static load test. The FE analysis is carried out using NX I-DEAS 6.1 and specially designed test jigs and equipment are used for the load tests.

  • PDF

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.