• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.029 seconds

Tree-Based Static/Dynamic Image Mosaicing (트리 기반 정적/동적 영상 모자이크)

  • Kang, Oh-hyung;Rhee, Yang-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.758-766
    • /
    • 2003
  • This paper proposes a tree-based hierarchical image mosaicing system using camera and object parameters for efficient video database construction. Gray level histogram difference and average intensity difference are proposed for scene change detection of input video. Camera parameter measured by utilizing least sum of square difference and affine model, and difference image is used for similarity measure of two input images. Also, dynamic objects are searched by through macro block setting and extracted by using region splitting and 4-split detection methods. Dynamic trajectory evaluation function is used for expression of dynamic objects, and blurring is performed for construction of soft and slow mosaic image.

Small-Signal Modeling and Control of Three-Phase Bridge Boost Rectifiers under Non-Sinusoidal Conditions

  • Chang, Yuan;Jinjun, Liu;Xiaoyu, Wang;Zhaoan, Wang
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.757-771
    • /
    • 2009
  • This paper proposes a systematic approach to the modeling of the small-signal characteristics of three-phase bridge boost rectifiers under non-sinusoidal conditions. The main obstacle to the conventional synchronous d-q frame modeling approach is that it is unable to identify a steady-state under non-sinusoidal conditions. However, for most applications under non-sinusoidal conditions, the current loops of boost rectifiers are designed to have a bandwidth that is much higher than typical harmonics frequencies in order to achieve good current control for these harmonic components. Therefore a quasi-static method is applied to the proposed modeling approach. The converter small-signal characteristics developed from conventional synchronous frame modeling under different operating points are investigated and a worst case point is then located for the current loop design. Both qualitative and quantitative analyses are presented. It is observed that operating points influence the converter low frequency characteristics but hardly affect the dominant poles. The relationship between power stage parameters, system poles and zeroes is also presented which offers good support for the system design. Both the simulation and experimental results verified the analysis and proposed modeling approach. Finally, the practical case of a parallel active power filter is studied to present the modeling approach and the resultant regulator design procedure. The system performance further verifies the whole analysis.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

A Study on the Acoustic Emission Characteristics of Weld Heat Affected Zone in SWS 490A Steel(1) (SWS 490A 강의 용접 열영향부 음향방출 특성 에 대한 연구(1))

  • 이장규;우창기;박성완;윤종희;조진호;김봉각;구영덕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • The object of this study is to investigate the effect of compounded welding through the AE(Acoustic Emission) characteristics for weld HAZ(Heat Affected Zone) under the static tensile test. This study was carried out an SWS 490A, high tension steel for electric shield metal arc welding(SMAW), $CO_2$ gas arc welding and TIG welding. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. The accumulated AE event curve of HAZ definitely have the point of inflection subject to tensile test. The results of the tensile test of HAZ come out electric shield arc welding >$CO_2$ gas arc welding>TIG welding in case of single welding, but generally the tensile test of HAZ come out electric shield arc welding> TIG welding > $CO_2$ gas arc welding. These history plots give us useful and powerful information to analyze the results of material evaluation testing.

Performance Modeling of a Pyrotechnically Actuated Pin Puller

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.102-111
    • /
    • 2014
  • An analytical model was developed to understand the physics and predict the functional performance of a pin puller. The formulated model is based on one-dimensional gas dynamics for an ideal gas. Resistive forces against pin shaft movement were measured in quasi-static mechanical tests, the results of which were incorporated into the model. The expansion chamber pressure and the pin shaft displacement were measured from an actual firing test and compared to the model prediction. The gas generation rate was adjusted by a correction factor, and the heat transfer rate was obtained through parametric analysis. The validity of the model is assessed for additional firing tests with different amounts of pyrotechnic charge. This model can provide knowledge on how the pin puller functions, and on which design parameters contribute the most to the actuation of the pin puller. Using this model, we estimate the functional safety factor by comparing the energy generated by the pyrotechnic charge to the energy required to accomplish the function.

Secondary Air Injection Effect on Cold Flow in a Laboratory-scale Circulating Fluidized Bed Combustor (실험실 규모 순환유동층 연소로에서 2차공기 주입이 냉간유동에 미치는 영향)

  • Jang, S.D.;La, S.H.;Hwang, J.H.;Kang, K.T.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.217-228
    • /
    • 2000
  • Circulating Fluidized Bed Combustor(CFBC) has been used for the incineration of waste sewage sludge and for the power generation. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of CFBC. A lab-scale riser is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Superficial velocities of each fluidization regime are well agreed with results predicted by a theoretical model. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. Our flow regime during experiments mainly belongs to fast fluidization regime for particle size of 300${\mu}m$. As the SA/PA ratio increases, solid holdup in the lower dense region of the riser increases.

  • PDF

Electronic Throttle Body Model Allowing for Non-linearity of DC Motor Driver (DC 모터 드라이버의 비선형성을 고려한 전자식 스로틀 바디 모델)

  • Jin, Sung-Tae;Kang, Jong-Jin;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2008
  • This paper proposes an Electronic Throttle Body (ETB) model considering a non-linearity of DC motor driver which is integrated with a H-bridge and a gate driver. A propagation delay and reverse recovery time of switching components cause non-linear characteristic of DC motor driver. This non-linearity affects not only the amateur voltage of DC motor, but also entire behaviour and parameters of ETB. In order to analyze the behavior of ETB more accurately, this non-linear effect of DC motor driver is modeled. The developed ETB model is validated by use of the step response and ramp response experiments, and it shows relatively accurate results compared with linear DC motor driver model.

Magnetic circuit optimization in designing Magnetorheological damper

  • Yazid, Izyan I.M.;Mazlan, Saiful A.;Kikuchi, Takehito;Zamzuri, Hairi;Imaduddin, Fitrian
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.869-881
    • /
    • 2014
  • This paper presents the materials analysis for combination of working modes of Magnetorheological (MR) damper. The materials were selected based on the optimum magnetic field strength at the effective areas in order to obtain a better design of MR damper. The design of electromagnetic circuit is one of the critical criteria in designing MR dampers besides the working mechanism and the types of MR damper. The increase in the magnetic field strength is an indication of the improvement in the damping performance of the MR damper. Eventually, the experimental test was performed under quasi-static loading to observe the performances of MR damper in shear mode, squeeze mode and mixed mode. The results showed that the increment of forces was obtained with the increased current due to higher magnetic flux density generated by electromagnetic coils. In general, it can be summarized that the combination of modes generates higher forces than single mode for the same experimental parameters throughout the study.

Design and homogenization of metal sandwich tubes with prismatic cores

  • Zhang, Kai;Deng, Zichen;Ouyang, Huajiang;Zhou, Jiaxi
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.439-454
    • /
    • 2013
  • Hollow cylindrical tubes with a prismatic sandwich lining designed to replace the solid cross-sections are studied in this paper. The sections are divided by a number of revolving periodic unit cells and three topologies of unit cells (Square, Triangle and Kagome) are proposed. Some types of multiple-topology designed materials are also studied. The feasibility and accuracy of a homogenization method for obtaining the equivalent parameters are investigated. As the curved elements of a unit cell are represented by straight elements in the method and the ratios of the lengths of the curved elements to the lengths of the straight elements vary with the changing number of unit cells, some errors may be introduced. The frequencies of the first five modes and responses of the complete and equivalent models under an internal static pressure and an internal step pressure are compared for investigating the scope of applications of the method. The lower bounds and upper bounds of the number of Square, Triangular and Kagome cells in the sections are obtained. It is shown that treating the multiple-topology designed materials as a separate-layer structure is more accurate than treating the structure as a whole.

Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.