DOI QR코드

DOI QR Code

Magnetic circuit optimization in designing Magnetorheological damper

  • Yazid, Izyan I.M. (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia) ;
  • Mazlan, Saiful A. (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia) ;
  • Kikuchi, Takehito (Department of Mechatronic, Faculty of Engineering, Oita University) ;
  • Zamzuri, Hairi (Vehicle System Engineering Research Laboratory, Universiti Teknologi Malaysia) ;
  • Imaduddin, Fitrian (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia)
  • Received : 2013.06.27
  • Accepted : 2014.12.14
  • Published : 2014.11.25

Abstract

This paper presents the materials analysis for combination of working modes of Magnetorheological (MR) damper. The materials were selected based on the optimum magnetic field strength at the effective areas in order to obtain a better design of MR damper. The design of electromagnetic circuit is one of the critical criteria in designing MR dampers besides the working mechanism and the types of MR damper. The increase in the magnetic field strength is an indication of the improvement in the damping performance of the MR damper. Eventually, the experimental test was performed under quasi-static loading to observe the performances of MR damper in shear mode, squeeze mode and mixed mode. The results showed that the increment of forces was obtained with the increased current due to higher magnetic flux density generated by electromagnetic coils. In general, it can be summarized that the combination of modes generates higher forces than single mode for the same experimental parameters throughout the study.

Keywords

Acknowledgement

Supported by : Ministry of High Education Malaysia

References

  1. Ahmadian, M. and Norris, J.A. (2008), "Experimental analysis of Magnetorheological dampers when subjected to impact and shock loading", Commun. Nonlinear. Sci. Numer. Simul., 13(9), 1978-1985. https://doi.org/10.1016/j.cnsns.2007.03.028
  2. Bai, X.X., Hu, W. and Werely, N.M. (2013), "Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions", IEEE T. Mag., 49(7), 3422-3425. https://doi.org/10.1109/TMAG.2013.2241402
  3. Batterbee, D.C., Sims, N.D., Stanway, R. and Wolesjza, Z. (2007), "Magnetorheological landing gear 1: A design methodology", Smart Mater. Struct., 16(6), 2429-2440. https://doi.org/10.1088/0964-1726/16/6/046
  4. Benoit, G. and David, L. (2012), High torque active mechanism for orthotic and/or prosthetic devices, US 2012/0310369 A1.
  5. Cha, Y.J., Agrawal, A.K. and Dyke, S.J. (2013), "Time delay effects on large-scale MR damper based semi-active control strategies", Smart Mater. Struct., 22(1), 015011. https://doi.org/10.1088/0964-1726/22/1/015011
  6. Choi, S.B., Seong, S.S. and Ha, S.H. (2009), "Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation", Smart Mater. Struct., 18(12), 125010. https://doi.org/10.1088/0964-1726/18/12/125010
  7. Du, H., Lam, J. Cheung, K.C., Li, W. and Zhang, N. (2013), "Direct voltage control of Magnetorheological damper for vehicle suspensions", Smart Mater. Struct., 22(10), 105016. https://doi.org/10.1088/0964-1726/22/10/105016
  8. Imaduddin, F., Mazlan, S.A. and Zamzuri, H. (2013), "A design and modelling review of rotary Magnetorheological damper", Mater. Design., 51, 575-591. https://doi.org/10.1016/j.matdes.2013.04.042
  9. Ismail, I., Mazlan, S.A. and Olabi, A.G. (2010), "Magnetic circuit simulation for Magnetorheological (MR) fluids testing rig in squeeze mode", Adv. Mater. Res., 123-125, 991-994. https://doi.org/10.4028/www.scientific.net/AMR.123-125.991
  10. Jean, P., Ohayon, R., and Le Bihan, D. (2005), "Payload/launcher vibration isolation: MR dampers modeling with fluid compressibility and inertia effects through continuity and momentum equations", Int. J. Mod. Phys. B., 19 (7-9), 1534-1541. https://doi.org/10.1142/S0217979205030554
  11. Kikuchi, T., Ikeda, K., Otsuki, K., Kakehashi, T. and Furusho, J. (2009), "Compact MR fluid clutch device for Human-Friendly Actuator", J. Phys.: Conf. Series, 149, 012059. https://doi.org/10.1088/1742-6596/149/1/012059
  12. Li, Z.X., Lv, Y., Xu, L.H., Ding, Y. and Zhao, Q. (2013), "Experimental studies on nonlinear seismic control of a steel-concrete hybrid structure using MR dampers", Eng. Struct., 49, 248-263. https://doi.org/10.1016/j.engstruct.2012.10.031
  13. Mazlan, S.A., Ekreem, N.B. and Olabi, A.G. (2008), "Apparent stress-strain relationship in experimental equipment where Magnetorheological fluids operate under compression mode", J. Phys. D: Appl. Phys., 41(9), 095002. https://doi.org/10.1088/0022-3727/41/9/095002
  14. Mazlan, S.A., Issa, A. Chowdhury, H.A. and Olabi, A.G. (2009), "Magnetic circuit design for the squeeze mode experiments on Magnetorheological fluids", Mater. Design., 30, 1985-1993. https://doi.org/10.1016/j.matdes.2008.09.009
  15. Mazlan, S.A., Ismail, I., Fathi, M.S., Rambat, S. and Anis, S.F. (2011), "An experimental investigation of Magnetorheological (MR) fluids under quasi-static loadings", Key. Eng. Mater., 495, 285-288. https://doi.org/10.4028/www.scientific.net/KEM.495.285
  16. Meeker, D.C. (2013), "Improvised open boundary conditions for magnetic finite elements", Magnet. IEEE Trans., 49(10), 5243-5247. https://doi.org/10.1109/TMAG.2013.2260348
  17. Mei, D.Q., Kong, T.R. and Chen, Z.C. (2005), "Optimal design of magnetic system for the Magnetorheological intelligent damper", Proc. of SPIE, 6042, 604244.
  18. Nam, Y.J. and Park, M.K. (2009), "Electromagnetic design of a Magnetorheological damper", J. Intel. Mat. Syst. Str., 20, 181-191. https://doi.org/10.1177/1045389X08091117
  19. Sallom, M.Y. and Samad, Z. (2011), "Finite element modeling and simulation of proposed design Magnetorheological valve", Int. J. Adv. Manuf. Tech., 54, 421-429. https://doi.org/10.1007/s00170-010-2963-1
  20. Saxena, D. and Rathore, H. (2013), "Vibration control of MR damper landing gear", Int. J. Adv. Res. Artif. Intell., 2, 72-76.
  21. Wang, D.H. and Wang, T. (2009), "Principle, design and modeling of an integrated relative displacement self-sensing Magnetorheological damper based on electromagnetic induction", Smart Mater. Struct., 18(9), 095025. https://doi.org/10.1088/0964-1726/18/9/095025
  22. Xie, H., Li, F. and Kang, G. (2013), "The application research of six-axis force sensor used by trans-femoral prosthesis", Adv. Mater. Res., 683, 741-744. https://doi.org/10.4028/www.scientific.net/AMR.683.741
  23. Yang, G., Spencer, B.F., Carlson, J.D. and Sain, M.K. (2002), "Large-scale Magnetorheological fluid damper: Modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
  24. Yang, T., Gao, Y., Zhao, J. Wang, S. and Zhu, Y. (2012), "A rotary Magnetorheological fluid damper for pathological tremor supression", Proceedings of the 2012 IEEE Inter. Conf. Mechat. Auto., Chengdu, China, August.
  25. Yang, Z., Wang, H., Han, X. and Fang, W. (2011), "Damping force of MR damper analysis and experimental", Proceedings of the Inter. Conf. Elect. Mech. Eng. Inform. Tech., 2528-2531, August.
  26. Yazid, I.M., Mazlan, S.A., Zamzuri, H., Mughni, M.J. and Chuprat, S. (2013), "Parameters consideration in designing a Magnetorheological damper", Key Eng. Mater., 543, 487-490. https://doi.org/10.4028/www.scientific.net/KEM.543.487
  27. Yazid, I.I.M., Mazlan, S.A, Kikuchi, T., Zamzuri, H. and Imaduddin, F. (2014), "Design of Magnetorheological damper with a combination of shear and squeeze modes", Mater. Design, 54, 87-95. https://doi.org/10.1016/j.matdes.2013.07.090
  28. Yu, G., Du, C. and Li, Z. (2012), "Optimum design of a magnetic circuit in a Magnetorheological damper", Appl. Mech. Mater., 130-134, 1400-1403.

Cited by

  1. An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.053
  2. Development of a modular MR valve using meandering flow path structure vol.25, pp.3, 2016, https://doi.org/10.1088/0964-1726/25/3/037001
  3. Testing and parametric modeling of magnetorheological valve with meandering flow path vol.85, pp.1, 2016, https://doi.org/10.1007/s11071-016-2684-6
  4. An investigation on the mitigation of end-stop impacts in a magnetorheological damper operated by the mixed mode vol.25, pp.12, 2016, https://doi.org/10.1088/0964-1726/25/12/125005
  5. ER・MR 流体を応用したパッシブ力制御デバイスと生体支援 vol.41, pp.2, 2017, https://doi.org/10.3951/sobim.41.2_63
  6. New Variable Stiffness Damper with Magnetorheological-Based Accumulator Control vol.775, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.775.204
  7. Constitutive models of magnetorheological fluids having temperature-dependent prediction parameter vol.27, pp.9, 2018, https://doi.org/10.1088/1361-665X/aac237
  8. A state of art on magneto-rheological materials and their potential applications vol.29, pp.10, 2018, https://doi.org/10.1177/1045389X18754350
  9. Full-Scale Simulations of Magnetorheological Damper for Implementation of Semi-Actively Structural Control vol.35, pp.4, 2014, https://doi.org/10.1017/jmech.2018.26
  10. Internal magnetic field tests and magnetic field coupling model of a three-coil magnetorheological damper vol.31, pp.19, 2014, https://doi.org/10.1177/1045389x20943948