• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.024 seconds

A Study on Pressure Characteristic in Various Inner Structure of Valves (밸브 운동부 구조 변화에 따른 압력특성에 관한 연구)

  • Hur, J.G.;Oh, I.H.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-82
    • /
    • 2010
  • In general, the control valves are essential components in hydraulic systems. Structural changes within the valves remain a challenge because many parameters of valve tend to interact in terms of static and dynamic performance. Therefore, the valve characteristics is applied directly to the stability of hydraulic system. Inner structure of the valve which is used mainly in the industries is made up poppet type and spool type. This paper made a description of the method for numerical analysis and modeling of the valve with a built-in moving part of four-type. Based on the physical parameters of the valves, a numerical model of objected valve is developed using the bond graph method. It is to verified the results that the moving part of four-type has an effect on pressure and flow characteristics. Also, It is analyzed the results which has an effect on response characteristic by angular of poppet valve face and inertia variation of the valve with a built-in moving part. In the results, it is confirmed that the rising and settling time vary with the shape of moving part in valve.

Development of a Dynamic Collision Avoidance Algorithm for Indoor Tracking System Based on Active RFID

  • Han, Se-Kyung;Choi, Yeon-Suk;Iwai, Masayuki;Sezaki, Kaoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.736-752
    • /
    • 2010
  • We propose a novel collision-avoidance algorithm for the active type RFID regarding an indoor tracking system. Several well-known collision avoidance algorithms are analyzed considering the adequacy for the indoor tracking system. We prove the superiority of the slotted ALOHA in comparison with CSMA for short and fixed length packets like an ID message in RFID. Observed results show that they are not applicable for active type RFID in terms of energy efficiency. Putting these all together, we propose a dedicated collision avoidance algorithm considering the unique features of the indoor tracking system. The proposed method includes a scheduled tag access period (STAP) as well as a random tag access period (RTAP) to address both of the static and dynamic characteristics of the system. The system parameters are determined through a quantitative analysis of the throughput and energy efficiency. Especially, some mathematical techniques have been deployed to obtain the optimal slot count for RTAP. Finally, simulation results are provided to illustrate the performance of the proposed method with variations of the parameters.

Development of Insole Pattern Depending on the Footprint Shape of Elder Women (노년여성의 족저 형태에 따른 인솔 패턴 개발 연구)

  • Lee, Ji-Eun;Kwon, Yeong-A
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.122-125
    • /
    • 2008
  • Even though many researchers studied the foot shape and dimension, those applications lacked. The purpose of this study was to develop insole pattern of elderly women according to footprint. Discrepancy in the classification criteria among of foot parameters complicates attempts for elderly women classification of foot sole. To develop a footprint-based classification technique for the classification of foot sole types by allowing simultaneous use of several parameters. Foot sole data from static standing footprints were recorded from 48 elderly women. The factors of footprint shape were determined. Cluster analysis was applied to obtain individual foot sole classifications. The classification model of foot insole is proposed for a classification of footprint in elderly women. An application of ANOVA, Duncan's analysis, frequency analysis, factor analysis, and cluster analysis have been made to footprint data. In order to make clear foot sole characteristics, the factors of footprint shape have been discussed. The results are as follows. The factors of footprint shape have been classified into four types: foot length, sole slope, outside sole slope, and foot width. The types of foot sole shape have been classified into four types: longed, shortened, outside sloped, and toes sloped.

  • PDF

Response modification factor of mixed structures

  • Fanaie, Nader;Shamlou, Shahab O.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1449-1466
    • /
    • 2015
  • Mixed structures consist of two parts: a lower part and an upper part. The lower part is usually made of concrete while the upper part is made of steel. Analyzing these structures is complicated and code-based design of them has many associated problems. In this research, the seismic behavior of mixed structures which have reinforced concrete frames and shear walls in their lower storeys and steel frames with bracing in their upper storeys were studied. For this purpose, seventeen structures in three groups of 5, 9 and 15 storey structures with different numbers of concrete and steel storeys were designed. Static pushover analysis, linear dynamic analysis and incremental dynamic analysis (IDA) using 15 earthquake records were performed by OpenSees software. Seismic parameters such as period, response modification factor and ductility factor were then obtained for the mixed (hybrid) structures using more than 4600 nonlinear dynamic analysis and used in the regression analysis for achieving proper formula. Finally, some formulas, effective in designing such structures, are presented for the mentioned parameters. According to the results obtained from this research, the response modification factor values of mixed structures are lower compared to those of steel or concrete ones with the same heights. This fact might be due to the irregularities of stiffness, mass, etc., at different heights of the structure. It should be mentioned that for the first time, the performance and seismic response of such structures were studied against real earthquake accelerations using nonlinear dynamic analysis, andresponse modification factor was obtained by IDA.

Correlation Analysis of Parameters affecting Pressure Distributions in Vertical Shafts by Design of Experiments (실험계획법에 의한 수직샤프트내 압력분포에 영향을 미치는 인자간 상관관계 분석)

  • Han, Hwa-Taik;Shin, Chul-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.883-888
    • /
    • 2008
  • Various effluents generated in cooking processes contribute a great deal to indoor air pollution among many other indoor pollutants such as dusts from outdoor and carbon dioxide from human body. Kitchen exhaust hoods are not believed to exhaust indoor contaminants properly in many cases, while generating too much noise. Instead of focusing on individual products of kitchen hoods, we should address the problem by attacking the ventilation system as a whole including vertical shafts and building air-tightness. In this study, it is intended to investigate the pressure distribution along the vertical shaft depending on various system parameters, such as shaft size, concurrent hood usage rate, roof fan, inlet pressure loss, and outdoor temperature. The maximum static pressure in the vertical shaft has been obtained using the method of design of experiments and analyzed by the analysis of variance. The results can be used for the design of kitchen exhaust systems by analyzing the pressure distributions in vertical shafts.

  • PDF

Analysis of Dynamic Characteristics on Condenser for the Control of Air Conditioning Systems (공조기 제어를 위한 응축기의 동특성 해석)

  • Kim, J.D.;Yoon, J.I.;Higuchi, K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.386-396
    • /
    • 1996
  • The dynamic characteristics of a condenser are numerically studied for the control of air-conditioning systems. The important factors, such as the refrigerant flow rate and refrigerant temperature, air velocity and air temperature at the condenser inlet, are incorporated into the analysis. This study was focused on the analysis of dynamic responses by transfer function method in the condenser. Block diagrams were made through analytic transfer function, and dynamic responses are evaluated on Bode diagrams in the frequency response. These results may be used for determining an optimum design parameters in an actual component and total systems. Also, the mathematical models, frequency response and steady state response may be used to increase understanding, to obtain useful information for its commercialization, to evaluate the hardware and the optimum design parameters, the design control system and to determine the best controller setting for the refrigeration and air conditioning systems.

  • PDF

A Study for Web Frame Design on Engine Room Structure of Ship (선박기관실 구조의 특설늑골 설계에 대한 연구)

  • J.J. Park;B.S. Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.155-160
    • /
    • 1993
  • A design method for web frame scantling on engine room structures was described. The parameters determining the scantling of web frame were studied on the basis of the empirical ship's data. It is found that the parameters determining the scanting of web frame consist of tween deck height, main engine and propeller excitation frequency, scantling draft, web frame spacing, the number of decks and main engine BHP etc. And a formula proposed by empirical ship's data was established in view points of static and dynamic structural behavior. In this study, it can be shown that at initial design stage, a method for web frame scantling of engine room structure is provided as very practical design processes.

  • PDF

Predicting Maximum Traction for Improving Traversability of Unmanned Robots on Rough Terrain (무인 로봇의 효율적 야지 주행을 위한 최대 구동력 추정)

  • Kim, Ja-Young;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.940-946
    • /
    • 2012
  • This paper proposes a method to predict maximum traction for unmanned robots on rough terrain in order to improve traversability. For a traction prediction, we use a friction-slip model based on modified Brixius model derived empirically in terramechanics which is a function of mobility number $B_n$ and slip ratio S. A friction-slip model includes characteristics of various rough terrains where robots are operated such as soil, sandy soil and grass-covered soil. Using a friction-slip model, we build a prediction model for terrain parameters on which we can know maximum static friction and optimal slip with respect to mobility number $B_n$. In this paper, Mobility number $B_n$ is estimated by modified Willoughby Sinkage model which is a function of sinkage z and slip ratio S. Therefore, if sinkage z and slip ratio are measured once by sensors such as a laser sensor and a velocity sensor, then mobility number $B_n$ is estimated and maximum traction is predicted through a prediction model for terrain parameters. Estimation results for maximum traction are shown on simulation using MATLAB. Prediction Performance for maximum traction of various terrains is evaluated as high accuracy by analyzing estimation errors.

Parametric Study on Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction (물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면에 관한 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.159-169
    • /
    • 2013
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details, the diameter of the transverse reinforcement and loading types. Eighteen column section specimens were tested under quasi-static monotonic loading. In this study, the computer program RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used. A modified lateral confining effect model was adopted for the hollow bridge column sections. This study documents the testing of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

Adaptive Fuzzy Logic Control Using a Predictive Neural Network (예측 신경망을 이용한 적응 퍼지 논리 제어)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.46-50
    • /
    • 1997
  • In fuzzy logic control, static fuzzy rules cannot cope with significant changes of parameters of plants or environment. To solve this prohlem, self-organizing fuzzy control. neural-network-hased fuzzy logic control and so on have heen introduced so far. However, dynamically changed fuzzy rules of these schemes may make a fuzzy logic controller Fall into dangerous situations because the changed fuzzy rules may he incomplete or inconsistent. This paper proposes a new adaptive filzzy logic control scheme using a predictivc neural network. Although some parameters of a controlled plant or environment are changed, proposed fuzzy logic controller changes its decision outputs adaptively and robustly using unchanged initial fuzzy rules and the predictive errors generated hy the predictive neural network by on-line learning. Experimental results with a D<' servo-motor position control problem show that propnsed cnntrol scheme is very useful in the viewpoint of adaptability.

  • PDF