• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.025 seconds

Influence of Culture Conditions on Production of NGPs by Aspergillus tubingensis

  • Lilia, Lopez De Leon;Isaura, Caceres;Julie, Bornot;Elodie, Choque;Jose, Raynal;Patricia, Taillandier;Florence, Mathieu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1412-1423
    • /
    • 2019
  • The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity ($a_w$) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Effect of the Combined Application of Mulligan Taping and Flossing Band on Muscle Activity and Balance Ability in Chronic Ankle Instability Patients

  • Jeong, Hyochang;Park, SeJin;Yu, Seunghun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the effects of combining Mulligan taping and flossing bands on lower limb muscle activity and static and dynamic balance. Design: A randomized controlled trial. Methods: Sixty-eight patients with chronic ankle instability were randomized into three groups that were treated with Mulligan taping (MT, n=22), flossing band (FB, n=23) and Mulligan taping combined with flossing band (MT+FB, n=23), and various parameters were compared before and after the intervention. The muscle activity of the lower extremities, including the tibialis anterior, peroneus longus and medial of gastrocnemius muscles was measured using BTS FREE EMG 1000, while the static and dynamic balance were measured using the Biorscuue balance measuring equipment. Results: There was a significant difference in muscle activity of the tibialis anterior muscle, before and after the intervention, in the MT group (p<0.01), FB (p<0.001) and MT+FB (p<0.001). There was also a significant difference in the muscle activity of the tibialis anterior muscle in the MT+FB group when compared with that in MT and FB groups (p<0.05). We also observed a significant difference in the dynamic balance all the groups (p<0.001). Conclusions: Therefore, combining Mulligan taping and flossing bands for patients with chronic ankle instability may improve dynamic balance and tibialis anterior muscle activity.

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai;Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.451-463
    • /
    • 2022
  • The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Assessing the Geometric Integrity of Cylindrical Storage Tanks: A Comparative Study Using Static Terrestrial Laser Scanning and Total Station

  • Mansour Alghamdi;Jinha Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.243-255
    • /
    • 2024
  • This study compares Static Terrestrial Laser Scanning (STLS)with the conventional Total Station (TS) method for the geometric assessment of cylindrical storage tanks. With the crucial need for maintaining tank integrity in the oil and gas industry, STLS and TS methods are evaluated for their efficacy in assessing tank deformations. Using STLS and TS, the roundness and verticality of two cylindrical tanks were examined. A deformation analysis based on American Petroleum Institute (API) standards was then provided. Key objectives included comparing the two methods according to API standards, evaluating the workflow for STLS point cloud processing, and presenting the pros and cons of the STLS method for tank geometric assessment. The study found that STLS, with its detailed and high-resolution data acquisition, offers a substantial advantage in having a comprehensive structural assessment over TS. However, STLS requires more processing time and prior knowledge about the data to tune certain parameters and achieve accurate assessment. The project outcomes intend to enhance industry professionals' understanding of applying STLS and TS to tank assessments, helping them choose the best method for their specific requirements.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

Static bending study of AFG nanobeam using local stress-and strain-driven nonlocal integral models

  • Yuan Tang;Hai Qing
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2024
  • In this paper, the problem of static bending of axially functionally graded (AFG) nanobeam is formulated with the local stress(Lσ)- and strain-driven(εD) two-phase local/nonlocal integral models (TPNIMs). The novelty of the present study aims to compare the size-effects of nonlocal integral models on bending deflections of AFG Euler-Bernoulli nano-beams. The integral relation between strain and nonlocal stress components based on two types nonlocal integral models is transformed unitedly and equivalently into differential form with constitutive boundary conditions. Purely LσD- and εD-NIMs would lead to ill-posed mathematical formulation, and Purely εD- and LσD-nonlocal differential models (NDM) may result in inconsistent size-dependent bending responses. The general differential quadrature method is applied to obtain the numerical results for bending deflection and moment of AFG nanobeam subjected to different boundary and loading conditions. The influence of AFG index, nonlocal models, and nonlocal parameters on the bending deflections of AFG Euler-Bernoulli nanobeams is investigated numerically. A consistent softening effects can be obtained for both LσD- and εD-TPNIMs. The results from current work may provide useful guidelines for designing and optimizing AFG Euler-Bernoulli beam based nano instruments.