• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.024 seconds

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

An efficient method to structural static reanalysis with deleting support constraints

  • Liu, Haifeng;Yue, Shigang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1121-1134
    • /
    • 2014
  • Structural design is usually an optimization process. Numerous parameters such as the member shapes and sizes, the elasticity modulus of material, the locations of nodes and the support constraints can be selected as design variables. These variables are progressively revised in order to obtain a satisfactory structure. Each modification requires a fresh analysis for the displacements and stresses, and reanalysis can be employed to reduce the computational cost. This paper is focused on static reanalysis problem with modification of deleting some supports. An efficient reanalysis method is proposed. The method makes full use of the initial information and preserves the ease of implementation. Numerical examples show that the calculated results of the proposed method are the identical as those of the direct analysis, while the computational time is remarkably reduced.

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

Numerical model for nonlinear analysis of composite concrete-steel-masonry bridges

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj;Smilovic, Marija
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • This paper firstly briefly describes developed numerical model for both static and dynamic analysis of planar structures made of concrete, steel and masonry. The model can simulate the main nonlinearity of such individual and composite structures. The model is quite simple and based on a small number of material parameters. After that, three real composite concrete-steel-masonry bridges were analyzed using the presented numerical model. It was concluded that the model can be useful in practical analysis of composite bridges. However, future verifications of the presented numerical model are desirable.

An Optimal Design Study of an Equilibrating-Mechanism for the Unbalanced Elevation-Drive System (정적 불균형 모멘트가 존재하는 고저구동장치의 평형 메카니즘 최적설계 연구)

  • Park, Keun-Kuk;Lee, Man-Hyung;Kim, Dong-Hyun;Ahn, Rae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1033-1038
    • /
    • 2000
  • The unbalanced heavy-loaded elevation-drive system is composed of a hydraulic cylinder, a driving link-mechanism and an equilibrating-mechanism which compensate the static unbalanced moment of the elevation load. The Compensator for the unbalanced moment is composed of a hydrau-pneumatic accumulator and a hydraulic cylinder which act with the elevation cylinder together. Compensation of the variable static-unbalanced moment for the elevation-drive system is very difficult because these mechanisms imply highly nonlinear properties due to air conditioning characteristics and mechanical rotation of the link-mechanism. In this study, through the analysis of the already designed equilibrating-mechanism, the optimal design parameters of the equilibrating-mechanism is suggested.

  • PDF

Dynamic Fracture Toughness of Chevron-notch Ceramic Specimens measured in Split Hopkinson Pressure Bar

  • Lee, Yeon-Soo;Yoon, Young-Ki;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.69-75
    • /
    • 2002
  • Measuring dynamic fracture toughness of brittle and small ceramic specimen is very difficult in a SHPB (Split Hopkinson Pressure Bar). As a countermeasure to this difficulty, a dynamic fracture toughness measuring method by the Chevron-notch ceramic specimen was proposed. Tested chevron specimens were of Chevron notch angles of 90$^{\circ}$, 100$^{\circ}$ and 110$^{\circ}$. Through finite element analysis, shape parameters of the Chevron-notch specimens according to notch angles were calculated. And the static fracture tough1ess of the Chevron-notch alumina specimen was measured as 3.8MPa√m similar to that of CT specimen with a precrack. Dynamic fracture toughness was 4.5MPa√m slightly higher than the static one. It was shown in this study that the proposed Chevron-notch specimens are valid to measure dynamic fracture toughness of extremely brittle materials such as ceramic.

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

CPW Feed Wideband U-slot Microstrip Antenna

  • Lee, Jong-In;Lee, Byoung-Moo;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.11-15
    • /
    • 2002
  • In this paper, we have proposed the new configuration of wideband antenna using CPW fred lines. The proposed antenna has CPW feed lines and U-slot to achieve wade bandwidth with good impedance matching. The use of CPW feed line can decrease the number of substrates. It is compared with the conventional antenna find by a microstrip fled line. The parameters of CPW fred lines were studied by using the quasi-static approximation which is based on the conformal mapping method. The analysis of CPW discontinuities such as the tapered-step structure and the open ended gap were studied by using the quasi-static approximation which is based on the boundary element method. Also, the equivalent circuit model of multi-layer antenna were proposed using the cavity model. Experiment results of the proposed antenna 7how wide-bandwidth characteristics and good radiation patterns in passband.

Static I-V Characteristics of Optically Controlled GaAs MESFET's with Emphasis on Substrate-induced Effects

  • Murty, Neti V.L. Narasimha;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.210-224
    • /
    • 2006
  • A new analytical model for the static I-V characteristics of GaAs MESFET’s under optically controlled conditions in both linear and saturation region is presented in this paper. The novelty of the model lies in characterizing both photovoltaic (external, internal) and photoconductive effects. Deep level traps in the semi insulating GaAs substrate are also included in this model. Finally, effect of backgate voltage on I-V characteristics is explained analytically for the first time in literature. Small signal parameters of GaAs MESFET are derived under both dark and illuminated conditions. Some of the results are compared with reported experimental results to show the validity of the proposed model. Since accurate dc modeling is the key to accurate ac modeling, this model is very useful in the designing of photonic MMIC’s and OEIC’s using GaAs MESFET.