• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.027 seconds

Free Vibrations of Arbitrary Tapered Beams with Static Deflections due to Arbitrary Distributed Dead Loads (임의분포 사하중에 정적변위를 갖는 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Lee, Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.50-57
    • /
    • 1996
  • A numerical method is presented to obtain the natural frequencies and mode shapes of the arbitrary tapered beams with static deflection due to arbitrary distributed dead loads. The differential equation governing free vibration of such beams is derived and solved numerically. The double integration method using the trapezoidal rule is used to solve the static behaviour of beams loaded arbitrary distributed dead load. Also, the Improved Euler method and the determinant search method are used to integrate the differential equation subjected to the boundary conditions and to determine the natural frequencies of the beams, respectively. In the numerical examples, the various geometries of the beams are considered : (1) linearly tapered beams as the arbitrary variable cross-section, (2) the triangular, sinusoidal and uniform loads as the arbitrary distributed dead loads and (3) the hinged-hinged, clamped-clamped and hinged-clamped ends as the end constraints. All numerical results are shown as the non-dimensional forms of the system parameters. The lowest three natural frequencies versus load parameter, slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with and without the effects of static deflection are presented in the figure. According to the numerical results obtained in this analysis, the following conclusions may be drawn : (1) the natural frequencies increase when the effects of static deflections are included, (2) the effects are larger at the lower modes than the higher ones and (3) it should be betteF to include the effect of static deflection for calculating the frequencies when the beams are supported by both hinged ends or one hinged end.

  • PDF

Kinematic Analysis of Torsion Beam Rear Suspension (토션빔 후륜 현가장치의 기구학적 특성 해석)

  • 강주석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.146-153
    • /
    • 2004
  • Torsion beam rear suspension has been widely adopted to the rear suspension of vehicle by reason of simple structure and cost competitiveness. Since the kinematic characteristics of torsion beam rear suspension are determined by elastic behavior of torsion beam, quasi-static analysis based on finite element modeling of torsion beam has been conducted to obtain the kinematic parameters of torsion beam rear suspension. In this paper, simple kinematic equations with rear geometric parameters are derived to predict the kinematic behavior of torsion beam rear suspension. The suspension design parameters such as roll center height, roll stiffness, roll steer and roll camber can be easily obtained with the kinematic equations. The suggested kinematic equations are validated from comparison with the test results and solution offered by ADAMS. The suspension design parameters varied with the position of torsion beam are discussed.

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.

Topics in TFT device physics and modelling

  • Migliorato, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.929-935
    • /
    • 2005
  • This paper contains a review of methods to analise static and dynamic properties of trap states in TFTs. The Gap Density of States is extracted from C-V and I-V characteristics. Switch on transients and small signal ac measurements are used in conjunction with simulation and an analytic model to extract traps dynamic parameters.

  • PDF

Dynamic Salivary Gland Scintigraphy in Clinical Sicca Syndrome: Comparison with Static images (구내 건조증을 호소하는 환자에서 역동적 타액선 신티그라피: 정적영상과의 비교)

  • Kim, Euy-Neyng;Sohn, Hyung-Sun;Choi, Jung-Eun;Kim, Sung-Hoon;Chung, Yong-An;Chung, Soo-Kyo;Kim, Choon-Yul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Purpose: In this study, we compared the quantitative characteristics of dynamic salivary gland scintigraphy with static scintigraphy in patients with clinical sicca syndrome using Tc-99m pertechnetate. Materials and Methods: Fifty-two parotid glands and 52 submandibular glands out of 26 patients with clinical sicca syndrome were studied by dynamic and static salivary gland scintigraphy. Ten normal volunteers were also studied as a control group for comparison of scintigraphic parameters. Ten minutes after injection of 370 MBq Tc-99m pertechnetate, we obtained pre-stimulus static images for a few minutes. Then dynamic salivary gland scintigraphy with lemon juice stimulation was performed for 20 minutes. Finally we obtained post-stimulus static images after dynamic images. On dynamic study, functional parameters such as uptake rate, secretion rate and re-uptake rate were calculated. The results of dynamic study and static images were compared. Results: On dynamic study, we could obtain functional parameters of salivary glands successfully. On dynamic study, 22 parotid glands and 22 submandibular glands out of each of 52 glands are abnormal. The static images demonstrated somewhat different results, of which reasons we could assume via dynamic study. Conclusion: Dynamic salivary gland scintigraphy using Tc-99m perechnetate were more functional than static images and might be useful in the assessment of the functional change of the salivary gland in patients with clinical sicca syndrome.

  • PDF

Three-dimensional finite element static analysis and safety evaluation of attachable roadside barriers on bridges (탈·부착식 교량 방호울타리의 3차원 유한요소 정적해석 및 안전성 평가)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2414-2418
    • /
    • 2014
  • This study carried out three-dimensional finite element analysis and structural safety evaluation of attachable roadside barriers. The effects of diaphragm distance and the number of bolts on displacements and maximum stresses for various parameters are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of barriers using the LS-DYNA program is further extended to study static behaviors and structural safety of the barrier with module structures connected by anchor bolt inserted through concrete bridge decks. The numerical results for six parameters are verified by comparing different models with displacements and stress distribution occurred in the barrier and shows good structural performance.

Seismic response estimation of steel plate shear walls using nonlinear static methods

  • Dhar, Moon Moon;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.777-799
    • /
    • 2016
  • One of the major components for performance based seismic design is accurate estimation of critical seismic demand parameters. While nonlinear seismic analysis is the most appropriate analysis method for estimation of seismic demand parameters, this method is very time consuming and complex. Single mode pushover analysis method, N2 method and multi-mode pushover analysis method, modal pushover analysis (MPA) are two nonlinear static methods that have recently been used for seismic performance evaluation of few lateral load-resisting systems. This paper further investigates the applicability of N2 and MPA methods for estimating the seismic demands of ductile unstiffened steel plate shear walls (SPSWs). Three different unstiffened SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed under artificial and real ground motions for Vancouver. A comparison of seismic response quantities such as, height-wise distribution of floor displacements, storey drifts estimated using N2 and MPA methods with more accurate nonlinear seismic analysis indicates that both N2 and MPA procedures can reasonably estimates the peak top displacements for low-rise SPSW buildings. In addition, MPA procedure provides better predictions of inter-storey drifts for taller SPSW. The MPA procedure has been extended to provide better estimate of base shear of SPSW.

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

A simulation study on the figure of merit optimization of a 1200V 4H-SiC DMOSFET (1200V급 4H-SiC DMOSFET 성능지수 최적화 설계 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Suk;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.63-63
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to observe static DC characteristics, such as a threshold voltage ($V_{TH}$) and a figure of merit ($V_B^2/R_{SP,ON}$). To optimize the static DC characteristics, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. Design parameters are optimized using 2D numerical simulations and the 4H-SiC DMOSFET structure results in high figure of merit ($V_B^2/R_{SP,ON}$>~$340MW/cm^2$) for a power MOSFET in $V_B{\sim}1200V$ range.

  • PDF

A Study on the Electrical Characteristics with Design Parameters in GaN Power Static Induction Transistor (GaN Power SIT의 설계변수에 따른 전기적 특성변화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.671-675
    • /
    • 2010
  • Gallium nitride (GaN), wide bandgap semiconductor, has attracted much attention because they are projected to have much better performance than silicon. In this paper, effects of design parameters change of GaN power static induction transistor (SIT) on the electrical characteristics (breakdown voltage, on resistance) were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get power GaN SIT that has 600 V class breakdown voltage. As a result, we could get optimized 600 V class power GaN SIT that has higher breakdown voltage and lower On resistance with a thin (a several micro-meters) thickness of the channel layer.