• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.042 seconds

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Design and Development of the Multi-joint Tracked Robot for Adaptive Uneven Terrain Driving (험지 주행을 위한 다관절 트랙 로봇 설계 및 개발)

  • Koh, Doo-Yeol;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.265-272
    • /
    • 2009
  • IVarious driving mechanisms to adapt to uneven environment have been developed for many urban search and rescue (USAR) missions. A tracked mechanism has been widely used to maintain the stability of robot's pose and to produce large traction force on uneven terrain in this research area. However, it has a drawback of low energy efficiency due to friction force when rotating. Moreover, single tracked mechanism can be in trouble when the body gets caught with high projections, so the track doesn't contact on the ground. A transformable tracked mechanism is proposed to solve these problems. The mechanism is designed with several articulations surrounded by tracks, used to generate an attack angle when the robot comes near obstacles. The stair climbing ability of proposed robot was analyzed since stairs are one of the most difficult obstacles in USAR mission. Stair climbing process is divided into four separate static analysis phases. Design parameters are optimized according to geometric limitations from the static analysis. The proposed mechanism was produced from optimized design parameters, and demonstrated in artificially constructed uneven environment and the actual stairway.

  • PDF

Static and dynamic behaviour of square plates with inhomogeneity subjected to non-uniform edge loading (compression and tension)

  • Prabhakara, D.L.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 1996
  • The tension and compression buckling behaviour of a square plate with localized zones of damage and subjected to non-uniform loading is studied using a finite element analysis. The influence of parameters such as position of damage, extent of damage, size of damage and position of load on instability behaviour are discussed. The dynamic behaviour for certain load and damage parameters are also presented. It is observed that the presence of damage has a marked effect on the static buckling load and natural frequency of the plate.

Transient Stability Enhancement by DSSC with Fuzzy Supplementary Controller

  • Khalilian, Mansour;Mokhtari, Maghsoud;Nazarpour, Daryoosh;Tousi, Behrouz
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.415-422
    • /
    • 2010
  • The distributed flexible alternative current transmission system (D-FACTS) is a recently developed FACTS technology. Distributed Static Series Compensator (DSSC) is one example of DFACTS devices. DSSC functions in the same way as a Static Synchronous Series Compensator (SSSC), but is smaller in size, lower in price, and possesses more capabilities. Likewise, DSSC lies in transmission lines in a distributed manner. In this work, we designed a fuzzy logic controller to use the DSSC for enhancing transient stability in a two-machine, two-area power system. The parameters of the fuzzy logic controller are varied widely by a suitable choice of membership function and parameters in the rule base. Simulation results demonstrate the effectiveness of the fuzzy controller for transient stability enhancement by DSSC.

ANALYTIC APPROACH FOR THE STUDY OF AIR AND/OR LIQUID FILLED GEOMEMBRANE TUBE SECTIONS ON A HORIZONTAL

  • Choi, Yoon-Rak
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.181-195
    • /
    • 2013
  • This study considers an air and liquid-filled geomembrane tube section resting on a horizontal foundation. All quantities are normalized to obtain geometrically similar solutions in the static equilibrium condition. Analytic solutions are expressed in closed form. The solution for the air or liquid-filled tube section is derived systematically as an extreme case of the air and liquid-filled tube section. The validity of these solutions is confirmed by comparing to previous study, and some results are shown for the characteristic parameters and shapes of air and/or liquid-filled cases. Using the result of present study, one can estimate the shape and characteristic parameters of a tube section without numerical integrations or iterations.

Measurement-based Estimation of the Composite Load Model Parameters

  • Kim, Byoung-Ho;Kim, Hong-Rae
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.845-851
    • /
    • 2012
  • Power system loads have a significant impact on a system. Although it is difficult to precisely describe loads in a mathematical model, accurately modeling them is important for a system analysis. The traditional load modeling method is based on the load components of a bus. Recently, the load modeling method based on measurements from a system has been introduced and developed by researchers. The two major components of a load modeling problem are determining the mathematical model for the target system and estimating the parameters of the determined model. We use the composite load model, which has both static and dynamic load characteristics. The ZIP model and the induction motor model are used for the static and dynamic load models, respectively. In this work, we propose the measurement-based parameter estimation method for the composite load model. The test system and related measurements are obtained using transient security assessment tool(TSAT) simulation program and PSS/E. The parameter estimation is then verified using these measurements. Cases are tested and verified using the sample system and its related measurements.

Static analysis on Permanent Magnet Synchronous Motors using Transfer Relation Theorem according to Shaft Materials (전자기 전달관계 이론을 이용한 회전자 축 조건별 영구자석 동기 전동기의 정특성 해석)

  • Jang, Seok-Myeong;Park, Yu-Seop;Ko, Kyoung-Jin;Park, Ji-Hoon;Lee, Sung-Ho;Choi, Jang-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.35-37
    • /
    • 2009
  • This paper deals with the static analysis on the permanent magnet synchronous motors(PMSM) using transfer relation theorem according to the shaft materials, and adopts the analytical method to predict the magnetic field distribution and to calculate the electrical parameters by using Transfer Relation Theorem(TRT) in terms of 2-D model in polar coordinates system. In addition, the three types of PMSMS with different types of shafts, which are Iron cored, Air cored, Full-ring permanent magnet type shaft, are suggested in this research, and with those models, not only the analysis on the magnetic field distribution, the estimation of electrical parameters, but also their comparison with Finite Element Analysis(FEA) is processed.

  • PDF

Design of High-Speed PM Synchronous Motor I : Static Characteristics, Parameters, Mechanical Characteristics (고속 영구자석형 동기전동기 설계 I : 정특성, 회로파라미터 기계적 특성 고찰)

  • Jang, Seok-Myeong;Cho, Han-Wook;Choi, Jang-Young;Ko, Kyoung-Jin;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.134-135
    • /
    • 2007
  • This paper describes the electrical and mechanical design scheme, static characteristics analysis, electrical parameters and mechanical characteristics of 1kW, 28000 class PM synchronous motor for high-speed applications.

  • PDF

Modal parametric changes in a steel bridge with retrofitting

  • Walia, Suresh Kumar;Vinayak, Hemant Kumar;Kumar, Ashok;Parti, Raman
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.385-403
    • /
    • 2015
  • This paper presents the status improvement of an old damaged deck type rural road steel truss bridge through the modal parametric study after partial retrofitting. The dynamic and static tests on bridge were carried out as in damaged state and after partial retrofitting. The dynamic testing on the steel bridge was carried out using accelerometers under similar environmental conditions with same speed of the moving vehicle. The comparison of the modal parameters i.e., frequency, mode shape mode shape curvature, modal strain energy, along with the deflection parameter are studied with respect to structural analytical model parameters. The status up gradation for the upper and downstream truss obtained was different due to differential level of damage in the bridge. Also after retrofitting the structural elemental behavior obtained was not same as desired. The damage level obtained through static tests carried out using total station indicated further retrofitting requirement.

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF