• Title/Summary/Keyword: static nonlinear

Search Result 1,082, Processing Time 0.027 seconds

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Seismic behavior factors of buckling-restrained braced frames

  • Kim, Jinkoo;Park, Junhee;Kim, Sang-Dae
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.261-284
    • /
    • 2009
  • The seismic behavior of a framed structure with chevron-type buckling restrained braces was investigated and their behavior factors, such as overstrength, ductility, and response modification factors, were evaluated. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2003, the AISC LRFD and the AISC Seismic Provisions. Nonlinear static pushover analyses using two different loading patterns and incremental dynamic analysis using 20 earthquake records were carried out to compute behavior factors. Time history analyses were also conducted with another 20 earthquakes to obtain dynamic responses. According to the analysis results, the response modification factors turned out to be larger than what is proposed in the provision in low-rise structures, and a little smaller than the code-values in the medium-rise structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.

Manufacturing of a Prototype Hybrid Step Motor and Evaluation of Its Characteristics (하이브리드 스텝모터의 시작품 제작 및 특성시험에 관한 연구)

  • Kim, Kwang-Bae;Choy, Ick;Baeg, Moon-Hong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • In this paper, an efficient method of a hybrid stepping motor is proposed using permeance method. To be specific, hybrid stepping motor is modelled firstly as an equivalent nonlinear magnetic circuit including the saturation effects of iron parts, and then the static holding torque of the motor is calculated as a function of each design factor via Newton-Raphson's method. To show the validities of the proposed method, a prototype of hybrid stepping motor for 5 1/4 inches FDD header drive is made and tested in laboratory. As a result, the experimental data for the static holding torque is shown to be within 10% error compared with that of the simulated results.

  • PDF

A Numerical Simulation of Springback Analysis for Sheet Metal Forming (박판성형을 위한 탄성복원해석의 수치적 모사)

  • 김충식;정완진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.9-16
    • /
    • 1998
  • New program for springback analysis has been developed to predict the deformation of springback more accurately. Static implicit FEM is used to find out the static equilibrium after springback. The shell element with 6 dogrees of freedom and 4 nodes is carefully implemented to improve the accuracy and the compatibility between forming analysis and springback analysis. Co-rotational approach and Newton-Raphson nonlinear iteration are used to resolve the nonlinearity of large deformation. The benchmark results show that the developed program gives good predictions in comparison with experimental and other commercial S/W's results. As practical examples, U draw bending and S-rail problems are carried out by the developed program.

Integrated Displacement Feedback Control of a Self-levelling System (셀프레벨링 시스템을 위한 변위적분 피드백 제어 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1317-1326
    • /
    • 2008
  • This paper presents a self.levelling system for a mass, which undergoes a severe acceleration, with integrated displacement feedback control. After a general description of such a system, theoretical analysis is investigated to design an active control device. The self-levelling system can be used to reduce the "quasi-static" deflection while isolating the "dynamic" vibration. A computer simulation model of 45 kg with two air spring mounts is considered to predict the performance of the control system. Important control parameters were acquired to meet the requirement of the system. The results showed the controller can reduce the displacement of the mass to the level of about 1/5 after control. Thus the self-levelling system can be applied usefully to reduce the displacement of a mass which experiences a high g dynamics.

Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate

  • Wang, Rong-Tyai;Kuo, Nai-Yi
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 1999
  • The large deflection theory of the Mindlin plate and Galerkin's method are employed to examine the static responses of a plate produced by the weight of the plate, and the dynamic responses of the plate caused by the coupling effect of these static responses with a set of moving forces. Results obtained by the large deflection theory are compared with those by the small deflection theory. The results indicate that the effect of weight of the plate increases the modal frequencies of the structure. The deviations of dynamic transverse deflection and of dynamic bending moment produced by a moving concentrated force between the two theories are significant for a thin plate with a large area. Both dynamic transverse deflection and dynamic bending moment obtained by the Mindlin plate theory are greater than those by the classical plate.

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach

  • Zhanlei Wang;Ye Chen
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.513-523
    • /
    • 2023
  • Buckling and post-buckling behaviors of geometrically perfect double-curvature shells made from smart composites have been investigated. The shell has been supposed to be exposed to transverse mechanical loading and magneto-electro-elastic (MEE) coupling. The composite shell has been made of two constituents which are piezoelectric and magnetic ingredients. Thus, the elastic properties might be variable based upon the percentages of the constituents. Incorporating small scale impacts in regard to nonlocal theory leads to the establishment of the governing equations for the double-curvature nanoshell. Such nanoshell stability will be shown to be affected by composite ingredients. More focus has been paid to the effects of small scale factor, electric voltage and magnetic intensity on stability curves of the nanoshell.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Probabilistic Structural Safety Assessment Considering the Initial Shape and Non-linearity of Steel Cable-Stayed Bridges (강사장교의 초기형상과 비선형성을 고려한 확률론적 구조안전성 평가)

  • Bang, Myung-Seok;Han, Sung-Ho;Lee, Woo-Sang;Lee, Chin-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In this study, the advanced numerical algorithm is developed which can performed the static and dynamic stochastic finite element analysis by considering the effect of uncertainties included in the member stiffness of steel cable-stayed bridges and seismic load. After conducting the linear and nonlinear initial shape analysis, the advanced numerical algorithm is the assessment tool which can performed structural the response analysis considering the static linearity and non-linearity of before or after induced intial tensile force, and examined the reliability assessment more efficiently. The verification of the developed numerical algorithm is evaluated by analyzing the regression analysis and coefficient of correlation using the direct monte carlo simulation. Also, the dynamic response characteristic and coefficient of variation of the steel cable-stayed bridge is calculated by considering the uncertainty of random variables using the developed numerical algorithm. In addition, the quantitative structural safety of the steel cable-stayed bridges is evaluated by conducting the reliability assessment based upon the dynamic stochastic finite element analysis result.