• Title/Summary/Keyword: static nonlinear

Search Result 1,082, Processing Time 0.029 seconds

The Static Nonlinear Analysis of the Offshore Pipeline (해저(海底)파이프라인의 정적(靜的) 비선형(非線形) 해석(解析))

  • Park, Young Suk;Chung, Tae Ju;Cho, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 1990
  • The static nonlinear analysis of offshore pipeline is carried out by the finite element method. The governing equilibrium equation are derived by the principle of minimum potential energy and the modified Newton-Raphson procedure is used to solve the system of nonlinear algebraic equation. Geometrically nonlinear beam elements and spring elements are utilized to model the pipeline, stinger, pipe supports and seabed simultaneously. The beam element developed can be used to model redundant structures. It provides for both the torsional deformation and elongation of pipeline, and permits the use of different physical properties in each principal direction. The validity of this method is investigated by comparing the results with these obtained by other methods.

  • PDF

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

Nonlinear free vibration of heated corrugated annular plates with a centric rigid mass

  • Wang, Yong-Gang;Li, Dan;Feng, Ze-Jun
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.491-505
    • /
    • 2010
  • A computational analysis of the nonlinear free vibration of corrugated annular plates with shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing equations based on Hamilton's principle and nonlinear bending theory of thin shallow shell are established for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges. A simple harmonic function in time is assumed and the time variable is eliminated from partial differential governing equations using the Kantorovich averaging procedure. The resulting ordinary equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical results are presented in both tabular and graphical forms, which demonstrate the accuracy of present method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient temperature, plate geometry, rigid mass and elastic constrain.

Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls (철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

Limit Cycle Application to Friction Identification and Compensation (한계사이클을 이용한 마찰력의 규명 및 보상)

  • Kim Min-Seok;Kim Myoung-Zoo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.938-946
    • /
    • 2005
  • Friction is a dominant nonlinear factor in servomechanisms, which seriously deteriorates system accuracy. A friction compensator is indispensable to fabricate high-performance servomechanisms. In order to compensate for the friction in the servomechanism, identification of the friction elements is required. To estimate the friction of the servomechanism, an accurate linear element model of the system is required first. Tn this paper, a nonlinear friction model, in which static, coulomb and viscous frictions as well as Stribeck effect are included, is identified through the describing function approximation of the nonlinear element. A nonlinear element composed of two relays is intentionally devised to induce various limit cycle conditions in the velocity control loop of the servomechanism. The friction coefficients are estimated from the intersection points of the linear and nonlinear elements in the complex plane. A Butterworth filter is added to the velocity control loop not only to meet the assumption of the harmonic balance method but also to improve the accuracy of the friction identification process. Validity of the proposed method is confirmed through numerical simulations and experiments. In addition, a model-based friction compensator is applied as a feedforward controller to compensate fur the nonlinear characteristics of the servomechanism and to verify the effectiveness of the proposed identification method.

Nonlinear Response Structural Optimization of a Joined-Wing Using Equivalent Loads (등가하중법을 이용한 접합날개의 기하 비선형 응답 구조최적설계)

  • Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.321-326
    • /
    • 2007
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing arc joined together in the joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performances and reduction of the structural weight. The structural behavior of the joined-wing has a high geometric nonlinearity according to the external loads. The gust loads are the most critical loading conditions in the structural design of the joined-wing. The nonlinear behavior should be considered in the optimization of the joined-wing. It is well known that conventional nonlinear response optimization is extremely expensive: therefore, the conventional method is almost impossible to use in large scale structures such as the joined-wing. In this research, geometric nonlinear response structural optimization is carried out using equivalent loads. Equivalent loads are the load sets which generate the same response field in linear analysis as that from nonlinear analysis. In the equivalent loads method, the external loads are transformed to the equivalent loads (EL) for linear static analysis, and linear response optimization is carried out based on the EL.

  • PDF

Detection of Manufacturing Defects in Stiffness of CFTA Girder using Static Loading (정적 시험을 사용한 CFTA거더의 제조시 강성 결함 탐색)

  • Kim, Doo-Kie;Alfahdawi, Nathem;Cui, Jintao;Park, Kyung-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.109-116
    • /
    • 2012
  • This paper presents a study on the nonlinear behavior of an innovative bridge girder made from concrete-filled and tied tubular steel arch (CFTA) under static loading. Manufacturing of the CFTA girder may have defects which may highly affect the symmetry and performance of the structure. A simple method is proposed by using stiffness extracted from static test data to detect manufacturing defects of the CFTA girder. A three-dimensional finite element model was used in the numerical analysis in order to verify the method. The proposed method was experimentally validated through static tests of the CFTA girder. The application of the proposed method showed that it is effective in identifying invisible manufacturing defects of the CFTA girder, especially for mass production of a standard type in the factory.

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames (철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가)

  • 김길환;전대한;이상호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 2002
  • The purpose of this study is to provide a fundamental data of earthquake resistant design through the estimation of the response modification factor and nonlinear displacement for moment resisting reinforced concrete frames by linear and nonlinear static analysis. The analysis models are designed in accordance with AIK code and then, estimated the response modification factor and nonlinear displacement of the buildings. The parameters such as story numbers(10, 20, 30), plan ratios(1:1, 1:2) and analysis types(2D, 3D) of building structure are chosen for use in this study. After comparing the results of linear and nonlinear static analysis, the response modification factor is obtained as the product of four factors: ductility factor, strength factor, damping factor and redundancy factor. The response modification factor are close to 3.5 in case of 2 span, 4.3 in case of 3 span and 5.0 in case 4 or more span models regardless number of stories and plan ratios. The nonlinear displacement is evaluated from the ratio of story drift angle(nonlinear drift/linear drift). The ratio of story drift angle increases as story numbers increase and the value varies from 5.85 to 9.34.