• Title/Summary/Keyword: static modulus

Search Result 312, Processing Time 0.023 seconds

Design and stress analysis of femur bone implant with composite plates

  • Ramakrishna, S.;Pavani, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2020
  • Development of lightweight implant plates are important to reduce the stress shielding effect for a prosthesis of femur bone fractures. Stainless steel (SS-316L) is a widely used material for making implants. Stress shielding effect and other issues arise due to the difference in mechanical properties of stainless steel when compared with bone. To overcome these issues, composite materials seem to be a better alternative solution. The comparison is made between two biocompatible composite materials, namely Ti-hydroxyapatite and Ti-polypropylene. "Titanium (Ti)" is fiber material while "hydroxyapatite" and "polypropylene" are matrix materials. These two composites have Young's modulus closer to the bone than stainless steel. Besides the variety of bones, present paper constrained to femur bone analysis only. Being heaviest and longest, the femur is the most likely to fail among all bone failures in human. Modelling of the femur bone, screws, implant and assembly was carried out using CATIA and static analysis was carried out using ANSYS. The femur bone assembly was analyzed for forces during daily activities. Ti-hydroxyapatite and Ti-polypropylene composite implants induced more stress in composite implant plate, results less stress induced in bone leading to a reduction in shielding effect than stainless steel implant plate thus ensuring safety and quick healing for the patient.

A Study on the Improvement of Solder Joint Reliability for 153 FC-BGA (153 FC-BGA에서 솔더접합부의 신뢰성 향상에 관한 연구)

  • 장의구;김남훈;유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • The 2nd level solder joint reliability of 153 FC-BGA for high-speed SRAM (Static Random Access Memory) with the large chip on laminate substrate comparing to PBGA(Plastic Ball Grid Array) was studied in this paper. This work has been done to understand an influence as the mounting with single side or double sides, structure of package, properties of underfill, properties and thickness of substrate and size of solder ball on the thermal cycling test. It was confirmed that thickness of BT(bismaleimide tiazine) substrate increased from 0.95 mm to 1.20 mm and solder joint fatigue life improved about 30% in the underfill with the low young's modulus. And resistance against the solder ball crack became twice with an increase of the solder ball size from 0.76 mm to 0.89 mm in solder joints.

  • PDF

Concrete Test for Creep and Shrinkage Properties on High Strength Concrete (고강도 콘크리트 크리프 및 건조수축 특성을 위한 재료실험)

  • Moon, Hyung-Jae;Cha, Han-Il;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.857-860
    • /
    • 2008
  • This study shows systematic procedures for investigating creep and shrinkage properties of 50, 60, 70 MPa concrete mixes, which were developed by Lotte E&C R&D Ins. for Lotte Super Tower Jamsil. The concrete test was performed both local and foreign laboratory, S-Lab. and CTL Group respectively. The former have done for total five days. The procedures included the followings, specimen fabrication, mold removal, specimen marking, water bath curing, packaging, and shipment. The latter has been doing by CTL within PCA(Portland Cement Association). They are testing on static and dynamic modulus of elasticity, compressive strength, creep & shrinkage, splitting tensile strength. In the case of creep and shrinkage, the test will be doing for 18 months according to each loading age.

  • PDF

An Analytic Study on the Creep Properties for Fibers Mixed of High Strength Concrete (고강도 콘크리트의 섬유 혼입에 따른 크리프 특성 분석에 관한 연구)

  • Park, Hee-Gon;Kwon, Hae-Won;Lee, Bo-Hyeong;Bae, Yeoun-Ki;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.81-85
    • /
    • 2009
  • In the recent years, the high strength concrete has increasingly been used according to extending market of tall buildings. However, Ministry of Land, transport and Maritime Affairs was established by law with an alternative plan after June 2008 because of the weakness of high strength concrete accompanied spalling phenomena in fire. The mix design of concrete has to properly meet standards which are the spalling resistance of concrete and limited temperature of steel reinforcement. The fire proof concrete mixed fiber has widely been used to meet spalling safety on the many construction sites, the most researches about the fire proof concrete mixed fiber had being carried out focused on fire resistance, compressive strength and cast in place of concrete. But the most important thing is column shortening used the fire proof concrete within the vertical members. In this paper, the fire proof concrete filled spalling safety standards was experimented by required material when the column shortening is revised between normal concrete and fire proof concrete mixed fiber and then the results have done a comparative analysis. Also, The paper aimed to indicate a basic data for revision of column shortening of fire proof concrete.

  • PDF

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

A Study on On-Site Railroad Track Structure Performance Improvement Methods for Low-Maintenance (현장궤도 생력화를 위한 도상구조 개선에 관한 연구)

  • 양재성;이희현;남보현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.479-486
    • /
    • 2000
  • There has been recently an on-going effort in railway community to improve the dynamic performance of on-site railroad track with limited track possession time. In this paper, train running test lateral resistant force test and static/dynamic analyses are conducted before and after sprinkle of the ballast stabilizer in order to investigate the dynamic behaviors and parameters of the railroad track. Based upon the above results, effects of the stabilizer is verified, and a table for the track modulus representing on-site track condition and the methods to reduce the vibration and the transmitting forces of the ballasted track components to the infrastructures are suggested. It is thought that the suggestions made in this paper could be used as the preliminary data for the condition assessment and the maintenance of the track in the future.

  • PDF

Seismic Analysis of Flat Slab Structures considering Stiffness Degradation (강성저감을 고려한 플랫슬래브 구조물의 지진해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.191-198
    • /
    • 2003
  • Flat slab system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the equivalent frame method(EFM) with equivalent beams proposed by Jacob S. Grossman in practical engineering for the analysis of flat slab structures. However, in many cases, when it is difficult to use the EFM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat slab system considered in the EFM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were peformed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EFM.

  • PDF

Structural Strength Assessment and Optimization for 20 Feet Class Power Boat (20피트급 파워보트의 구조강도 평가 및 최적화)

  • Yum, Jae-Seon;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.108-114
    • /
    • 2016
  • Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.

Effects of Sand Blasting on TiAlN Coating on WC Hard Metal Alloy Tip (WC위 TiAlN 코팅층에 미치는 Sand Blasting 처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.54-61
    • /
    • 2021
  • The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.