• Title/Summary/Keyword: static modulus

Search Result 315, Processing Time 0.02 seconds

Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성 특성)

  • 김영익;민정기;조일호;김경태;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.324-329
    • /
    • 1999
  • This study is performed to evaluate an elastic properties of rice straw ash concrete . The following conclusions are drawn ; The ultrasonic pulse velocity is in the range of 4.084 ∼4.336㎧, which has showed abuot the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity is showed by 5% rice straw ash filled reice straw ash concrete. The dynamic and static modulus of elasticity i sin the range of 294 ${\times}$103 ∼ 347 ${\times}$103 and 266${\times}$ 103 ∼347${\times}$ 103 kgf/$\textrm{cm}^2$ , respectively. It is showed about the same compared to that of the normla cement concrete. The poisson's number of rice straw ash concrete is less than that of the normal cement concrete . The stress-strain curve of concrete which is contained rice straw ash within 10% appear slowly and over 10% appear almost straightly.

  • PDF

Experimental Study on physical and Mechanical Properties of Concrete with Fly Ash (플라이 애시를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.107-113
    • /
    • 2000
  • This study is performed to examine the physical and mechanical properties of concrete with fly ash. Test results show that the unit weights of concrete with fly ash are decreased 1-3% and the highest strength is achieved by 10% filled fly ash concrete with it is increased 7% than that of the normal cement concrete. the ultrasonic pulse velocity is in the range of 3.705~4.204m/s and the dynamic and static modulus of elasticity is in the range of 271$\times$103 ~289$\times$103kgf/cm2 and 208$\times$103 ~262$\times$103kgf/cm2 respectively. The acid-resistance is increased with increase of the content of fly ash. It is 1.2 times of the normal cement concrete by 10% filled fly ash concrete and 1.7 times by 30% filled fly ash concrete respectively.

  • PDF

Foundamental Properties of High Strength Concrete Using Silica Fume (실리카흄을 이용한 고강도 콘크리트의 기초적 성질)

  • 곽기주;이경동;곽동림
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.83-92
    • /
    • 1997
  • An experimental study of the application of Silica fume for the high strength concrete was conducted. Nine specimens with three different contents of silica fume, 0%, 10%, 20% and with three water-cement ratio 30%, 40%, 50% were tested. Results shows that 10% of silica fume and 30% of water-cement ratio has a maximum strength with 700kg/$cm^2$ of compressive strength and 64kg/$cm^2$ of splitting tensile strength and 100kg/$cm^2$ of flexural strength. Slump value of the tested samples decreases with increasing water-cement ratio and elapsed time of silica fume. Splitting tensile strength$({\sigma}_f)$ and flexural strength $({\sigma}_f)$ and static modulus of elasticity(E) can be correlated with compressive strength $({\sigma}_c)$ from a regression analysis.

  • PDF

Load Bearing Capacity Evaluation of Continuous IPC Girder Bridge. (IPC 거더 연속교의 실교량 내하력 평가 연구)

  • Han, Man-Yop;Hwang, Eu-Seung;Jin, Kyung-Seok;Kang, Sang-Hoon;Shin, Jae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.475-478
    • /
    • 2005
  • This study was performed to evaluate about load bearing capacity of continuos IPC Girder Bridge under and after Construction. This is Ichi-1 Bridge that is 2-40m span continuous bridge on a extension road through the Ichun and the Naesa. The result of static loading test to use a 25ton truck after construction, deflection ratio is 0.64 that is $35\%$ and average of response ratio is 0.48$\~$0.89 that is less than theoretical value. The result of dynamic loading test, the number of proper vibrations is 3.06Hz that is like theoretical value 3.61Hz, the modulus of impact is 0.235 that is bigger than specification 0.19. the load bearing capacity is minimum DB-40 that is so big value. In the result, continuos IPC Girder Bridge is safe in short period. we will evaluate long period behavior of continuos IPC Girder Bridge.

  • PDF

Case Study Top-Base Foundation Static Loading Test in Reclaimed Land (매립지반의 팽이말뚝 평판재하시험 사례 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Lee, Ae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.721-728
    • /
    • 2008
  • Top-Base Method is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and the effect of restraining settlement when the bearing capacity of the ground is not enough. Top-shaped cone concrete foundations are installed in graveled laid over soft ground. The principle of the basic method is to maximize effect of dispersing the overburden pressure by increasing the contact area of the top-shaped cone. Therefore, the bearing capacity is increased and the settlement is decreased by the embedded resistance of pile part in the ground. In this paper, the plate bearing test was conducted to evaluate the feasibility of Top-Base foundation. Based on the test results, the coefficient of subgrade reaction, elastic modulus, and settlement of foundation on reclaimed land was derived.

  • PDF

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF

Numerical Prediction of Mechanical Properties of Composites (합성재료 물성치의 수치적 예측)

  • 신수봉;고현무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.11-18
    • /
    • 1997
  • Mechanical properties of a composite mixed by components with known material properties are numerically predicted at various volume fractions rather than investigated through experiments. The properties, elastic modulus and Poisson's ratio, are estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Mechanical properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theories.

  • PDF

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

Mechanical Properties and Durability of Cement Concrete Incorporating Silica Fume (실리카퓸을 혼합한 시멘트 콘크리트의 역학적 특성 및 내구성)

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.412-418
    • /
    • 2010
  • This paper presents the results of experimental work on both mechanical properties and durability of concrete or mortar incorporating silica fume. The aim of this study was to investigate the effect of replacement of silica fume on the performance of hardened concrete or mortar. The replacement levels of silica fume that replaced cement in this work were 0%, 5%, 10% and 15%, respectively. The results of this study indicate that both mechanical properties and durability of concrete are greatly dependent on the replacement levels of silica fume. As the replacement level of silica fume increased, the mechanical properties including compressive and flexural strengths, and static modulus of elasticity were proportionally enhanced. Furthermore, it was found that silica fume had some beneficial effects on the resistances to both chloride ions penetration and sodium sulfate attack. However, it exhibited poor resistances to both freezing-thawing action and magnesium sulfate attack.

리엔트런트 패널의 전면볼록성에 대한 정량적 해석

  • Heo, Jeong-Min;Lee, Ji-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.228-233
    • /
    • 2016
  • Auxetic material is a material which has negative Poisson's ratio(NPR). Auxetic material shows some distinctive property like high energy absorbing property and high shear modulus. Among these, synclastic curvature is very interesting characteristic. When synclastic-curvature-material bends, it changes its shape like dome, contrary to non-auxetic material which changes its shape like saddle(anticlastic). This distinctive property could make it easy to manufacture curved structure like nose cone or wing panel in aerospace engineering. In this study, we studied a quantitative analysis about synclastic curvature of re-entrant panel with finite element model. We suggested a concept 'Degree of Synclasticity(DOS)', which means a ratio of curvature of load-direction and load-orthogonal direction. We studied the variation of DOS with two factor, unit cell inner angle(${\theta}$) and load position angle(${\phi}$). DOS decreases as ${\theta}$ increases because the unit cell goes out of auxetic-shape. As ${\phi}$ varies, DOS changes in a large range. So proper optimization of ${\phi}$ would be needed for application.

  • PDF