References
- J. T. Song and J. H. Shin, "Rheological Properties of Cement Pastes Containing Mineral Admixtures and Superplasticizer(in Korean)," J. Kor. Ceram. Soc., 42 [11] 737-42 (2005). https://doi.org/10.4191/KCERS.2005.42.11.737
- S. Wild, B. B. Sabir, and J. M. Khatib, "Factors Influencing Strength Development of Concrete Containing Silica Fume," Cem. Concr. Res., 25 [7] 209-20 (1995). https://doi.org/10.1016/0008-8846(94)00128-L
- R. D. Hooton and M. P. Titherington, "Chloride Resistance of High-Performance Concretes Subjected to Accelerated Curing," Cem. Concr. Res., 34 [9] 1561-67 (2004). https://doi.org/10.1016/j.cemconres.2004.03.024
- O. Kayali and B. Zhu. "Corrosion Performance of Midium-Strength and Silica Fume High-Strength Reinforced Concrete in a Chloride Solution," Cem. Concr. Comp., 27 [1] 117-24 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.040
- H. Yazici, "The Effect of Silica Fume and High-Volume Class C Fly Ash on Mechanical Properties, Chloride Penetration and Freeze-Thaw Resistance of Self-Compacting Concrete," Const. Build. Mater., 22 [4] 456-62 (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.002
- NT BUILD 492, "Concrete, Mortar and Cement-based Repair Materials: Chloride Migration Coefficient from Non- Steady-State Migration Experiments," pp.1-8, Espoo Finland: Nordiest, 1999.
- S. Bhanja and B. Sengupta, "Influence of Silica Fume on the Tensile Strength of Concrete," Cem. Concr. Res., 35 [4] 743-47 (2005). https://doi.org/10.1016/j.cemconres.2004.05.024
- M. Ghrici, S. Kenai, and M. S. Mansour, "Mechanical Properties and Durability of Mortar and Concrete Containing Natural Pozzolana and Limestone Blended Cements," Cem. Concr. Comp., 29 [7] 542-49 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.009
- ACI Committee 318, "Building Code Requirements for Reinforced Concrete," p. 107, American Concrete Institute, 2008.
- M. Mazloom, A. A. Ramezanianpour, and J. J. Brooks, "Effect of Silica Fume on Mechanical Properties of High-Strength Concrete," Cem. Concr. Comp., 26 [4] 347-57 (2004). https://doi.org/10.1016/S0958-9465(03)00017-9
- H. W. Song, S. W. Pack, S. H. Nam, J. C. Jang, and V. Saraswathy, "Estimation of the Permeability of Silica Fume Cement Concrete," Const. Build. Mater., 24 [3] 315-21 (2010). https://doi.org/10.1016/j.conbuildmat.2009.08.033
- M. Shekarchi, A. Rafiee, and H. Layssi, "Long-Term Chloride Diffusion in Silica Fume Concrete in Harsh Marine Cclimates," Cem. Concr. Comp., 31 [10] 769-75 (2009). https://doi.org/10.1016/j.cemconcomp.2009.08.005
- G. Fagerlund, "Frost Resistance of High Performance Concrete- Some Theoretical Considerations," Durability of High Performance Concrete: In Proceedings of the RILEM International Workshop; pp. 112-40, Paris, France, 1995.
- R. D. Hooton, "Influence of Silica Fume Replacement of Cement on Physical Properties and Resistance to Sulfate Attack, Freezing and Thawing and Alkali-Silica Reactivity," ACI Mater. J., 90 [2] 143-51 (1993).
- B. B. Sabir, "Mechanical Properties and Frost Resistance of Silica Fume Concrete," Cem. Concr. Comp., 19 [4] 285-94 (1997). https://doi.org/10.1016/S0958-9465(97)00020-6
- B. B. Sabir and K. Kouyiali, "Freeze-Thaw Durability of Air-Entrained CSF Concrete," Cem. Concr. Comp., 13 [3] 203-8 (1991). https://doi.org/10.1016/0958-9465(91)90021-9
- M. Collepardi, "Thaumasite Formation and Deterioration in Historic Buildings," Cem. Concr. Comp., 21 [2] 147-54 (1999). https://doi.org/10.1016/S0958-9465(98)00044-4
- D. W. Hobbs and M. G. Taylor, "Nature of the Thaumasite Sulfate Attack Mechanism in Field Concrete," Cem. Concr. Res., 30 [4] 529-33 (2000). https://doi.org/10.1016/S0008-8846(99)00255-0
- S. T. Lee, H. Y. Moon, and R. N. Swamy, "Sulfate Attack and Role of Silica Fume in Resisting Strength Loss," Cem. Concr. Comp., 27 [1] 65-76 (2005). https://doi.org/10.1016/j.cemconcomp.2003.11.003
- O. S. B. Al-Amoudi, "Attack on Plain and Blended Cements Exposed to Aggressive Sulfate Environments," Cem. Concr. Comp., 24 [3] 305-16 (2002). https://doi.org/10.1016/S0958-9465(01)00082-8
Cited by
- Effect of polypropylene fibre on flexural properties of concrete composites containing fly ash and silica fume vol.226, pp.2, 2012, https://doi.org/10.1177/1464420712437637
- Combined effect of polypropylene fiber and silica fume on workability and carbonation resistance of concrete composite containing fly ash vol.227, pp.3, 2013, https://doi.org/10.1177/1464420712458198
- Water impermeability of fly ash concrete composites containing silica fume and polypropylene fiber vol.227, pp.3, 2013, https://doi.org/10.1177/1464420712454049
- Durability of high performance concrete composites containing silica fume vol.227, pp.4, 2013, https://doi.org/10.1177/1464420712460617
- Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar vol.25, pp.3, 2013, https://doi.org/10.4334/JKCI.2013.25.3.305
- Freezing–thawing durability of fly ash concrete composites containing silica fume and polypropylene fiber vol.228, pp.3, 2014, https://doi.org/10.1177/1464420713480984
- Evaluating Material Properties of Grout for PSC Bridge According to Admixture Type vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.299