• Title/Summary/Keyword: static mixers' elements

Search Result 7, Processing Time 0.03 seconds

Numerical Study of Flow Characteristics in Static Mixers (정적믹서의 유동특성에 대한 수치적 연구)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Oh, Seung-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1957-1962
    • /
    • 2004
  • The objective of this study is to perform the numerical investigation of flow characteristics in static mixers. Simulations are carried out for mixers consisting of up to six Kenics and PPM elements placed end-to-end at an angle of $90^{\circ}$and for a range of Reynolds number($1{\leq}Re{\leq}100$). The pressure drop across a six-element Kenics mixer is computed and compared with the previous experimental correlations. The results are in good agreement with the previous correlations. The simulated flow field of Kenics mixer is extremely complex and contains regions of transverse flow that is dominated by the interaction of vortices produced by the mixer elements.

  • PDF

Mixing Characteristics of Static Mixers (스태틱 믹서의 혼합특성)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Oh, Seung-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1955-1960
    • /
    • 2003
  • Static mixers have found a large range of applications, including blending, reaction, dispersion, heat transfer and mass transfer. All static mixers have in common a straight pipe or transfer tube into which individual elements are inserted to cut, fold, twist and re-combine the mixing fluid. The operations virtually ensure uniformity in composition, concentration, viscosity and temperature. The objective of this study is to perform the experimental investigations of mixing characteristics for three mixing element types. The resulting mixing patterns were recorded with a digital camera. OPTIMAS was used to analysis the visualized images. The results clearly indicated that the mixing characteristics was highly influenced by the mixer types or mixing mode.

  • PDF

Conversion of Mixed Fat into Biodiesel in Plug Flow Reactor Using Alkali and Mixed Catalysts (관형반응기에서 알칼리 및 혼합촉매를 사용한 혼합지방의 바이오디젤화)

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • The continuous transesterification of mixed fat was done on the plug flow reactor packed with the static mixers. The transesterification using 0.5 wt% KOH, 0.8 wt% TMAH and mixed catalyst[40 v/v% KOH(0.5 wt%)+60 v/v% TMAH(0.8 wt%)] was conducted with the changes of molar ratios, weight percentage of beef, flow rates and number of static mixer's elements at $65^{\circ}C$. The overall conversion of mixed fat at 1:8 molar ratio, 50 wt% of beef and 24 of static mixer's elements increased until 0.7mL/min of flow rate. The overall conversion of mixed fat showed 96% at those conditions. So, the optimum operating conditions on tublar reactor were 1:8 molar ratio, 50 wt% of beef, 0.7 mL/min of flow rate and 24 of static mixer' s elements.

Development and Application of Static Mixer (스태틱 믹서 개발 및 응용)

  • Yang, Hei-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.506-513
    • /
    • 2007
  • One of the most widely used static mixers is Sulzer type mixer. However the structure of the element is so complicated that the mixing efficiency is better than others, whereas the pressure drop is larger than the others. Therefore new elements are necessary to reduce the pressure drop and to minimize the decrease of the mixing efficiency compared with the Sulzer ones. The objectives of this study are to develop new static mixer and to perform the experimental investigation in order to evaluate the performance of the new one, and to investigate the applicability of the one in an inline coagulant mixing system for water treatment, The pressure drops of the new static mixer elements were about 4-12% lower than that of the Sulzer SMX one, and the mixing efficiency of the Sulzer SMX one was about 2-5% higher than that of the new ones. The inline coagulant mixing system with a new static mixer element performed significantly better than the traditional mechanical mixing system for turbidity removal.

A Study for the Pressure Drop of Static Mixers (스태틱 믹서의 압력손실에 대한 연구)

  • 양희천;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.299-304
    • /
    • 2003
  • Static mixer consists of a straight pipe of circular cross section into which individual elements are inserted to cut, fold, twist and re-combine the mixing fluid. The number of elements and their shape required in any application depend on the complexity of the mixing process. The objectives of this study are to develop a new static mixer and to perform the experimental investigation of pressure drop in order to evaluate the performance of the new one. The mixing fluid used is Glycerin. The pressure drop is measured using a hydraulic manometer and the correlation of Z-factor is suggested as a function of Re. The Z-factors of SSC and YNU mixer are about 40% lower than and 4% higher than that of the Sulzer one.

Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process (연속공정에 의한 식물유의 바이오디젤유 전환)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • Transesterfication of vegetable oils and methanol with alkaline catalyst was carried out to produce biodiesel fuel by continuous process. The process consists of two static mixers, one tubular reactor and two coolers and gave $96{\sim}99$% of methyl ester yield from soybean oil and rapeseed oil. Experimental variables were the molar ratios of methanol to vegetable oil, alkaline catalyst contents, flow rates, mixer element number. The optimum ranges of operating variables were as follows; reaction temperature of $70^{\circ}C$, l:6 of molar ratio of methanol to oil, O.4%(w/w) sodium hydroxide based on oil, static mixer elements number of 24 and 4 min. residence time.

Effect of Mixing Elements in Line Mixer on Mixing and Flow Characteristics (혼화 및 유동특성에 미치는 라인믹서 내 혼합요소의 영향)

  • Yu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.437-443
    • /
    • 2018
  • This study investigates the effect of the mixing elements on the pressure loss and mixing performance in line mixer. The high density ozone water devices mixed with gas and liquid are used in various fields such as sterilizing of group feeding facilities and water quality management at a fish farm. Due to the decrease in rainfall due to climate change, pasteurization of drinking water from ground water and surface water is extremely important. Therefore, it is intended to develop a line-mixed gas liquid mixer with a small amount of space. In this study, the effects of the number of static mixers and the types and the number of the orifice used in line mixer on the volume fraction and the pressure loss were studied by CFD simulation. The pressure drops of line mixer with orifice which curved vanes were attached to were down to more than 50 percent of that of line mixer with static mixer whereas the mixing performance of the former was similar to that of the latter.