• Title/Summary/Keyword: static method

Search Result 4,733, Processing Time 0.028 seconds

Event Detection on Motion Activities Using a Dynamic Grid

  • Preechasuk, Jitdumrong;Piamsa-nga, Punpiti
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.538-555
    • /
    • 2015
  • Event detection based on using features from a static grid can give poor results from the viewpoint of two main aspects: the position of the camera and the position of the event that is occurring in the scene. The former causes problems when training and test events are at different distances from the camera to the actual position of the event. The latter can be a source of problems when training events take place in any position in the scene, and the test events take place in a position different from the training events. Both issues degrade the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the proposed method can detect the four types of event patterns with high accuracy. Additionally, the performance of the proposed method is better than the static grid method and the proposed method achieves higher accuracy than the previous method regarding the aforementioned aspects.

The Effect of Static Balance on Colors and Music Tempo Stimulation for Normal Children (색과 음악 빠르기 자극이 정상 아동의 정적 균형에 미치는 영향)

  • Yu, Byong-Kyu;Kim, Kyung;Hwang, Jae-Su
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • Objective : The purpose of this study was to investigate the effect of sensory stimulation for static balance on normal children. Sensory input was consisted of colors, and music tempo stimulation. Methods : Participants were consisted of 20 normal kindergarten children ranging in age from six to seven years. The static balance was tested by a BPM(Balance Performance Monitor). In this study one-way ANOVA was used and the statistical significance level of results was determined at 0.05. Results : 1. According to color stimulation, there was no significant difference in static balance among red, yellow, green(p>0.05). 2. According to music tempo stimulation, there was no significant difference in static balance, among the high music tempo and low music tempo children in a general environment(p>0.05). 3. However, both green color and low music tempo stimulation have a little effect on static balance on normal children. Conclusion : These results indicate the possibility that the application method of green color and low music tempo stimulation may help in the improvement of static balance for the disabled children. This study will be used as the foundational data of therapeutic environment for the disabled children.

  • PDF

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

A Study on Software Static Analysis Method on IEC 62279 (IEC 62279 규격의 소프트웨어 정적분석에 관한 연구)

  • Jin, Zhe-Huan;Li, Chang-Long;Lee, Jae-Ho;Kim, Jae-Sik;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.513-519
    • /
    • 2015
  • Static analysis is one of the software source code analysis tools. 9 static analysis methods of three groups are recommended by international electro-technical commission about software safety related standard in IEC 62279. In this paper we choose the proper static analysis method from IEC 62279 about the train wayside communication system, Shorten the time of railway signalling software development using LDRA tools. And it wil be useful to improve the effective development of the safety-related software.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

Effect of Static Recovery and Dynamic Recovery on the Cardiopulmonary Variables, Lower Extremity Muscle Activity after Progressive Resistance Exercise to Maximal Point

  • Yoon, Jung-Gyu;Kim, Ga-Yeong;Kim, Min-A;Lee, Seung-Mi;Kwon, Seung-Min;Yoo, Kyung-Tae;Cho, Joon-Haeng;Choi, Jung-Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.237-243
    • /
    • 2011
  • This study was to examine on the respiratory variables, heart rate and muscle activity between the static recovery and dynamic recovery after progressive resistance exercise to maximal point. Subjects were 15 students enrolled in N University. All were tested two times (static recovery and dynamic recovery) and were requested to perform a walking on a treadmill after progressive resistance exercise to maximal point. Electromyography(EMG) was used to monitor the muscle activity(TA: Tibialis Anterior, MG: Medial Gastrocnemius) during gait. CPEX-1 was used to measure the respiratory variables and heart rate. The dynamic recovery group was shown the significant lower heart rate than that of static recovery group at during gait. Respiratory rate showed statistically a significant difference. Electromyography(RMS, root mean square) showed a non-significant difference. But the dynamic recovery group of muscle activity was found highly in TA and MG. This study indicated that the dynamic recovery method evidenced more faster than the static recovery method. And this type of dynamic rest by walking can be a help of recovery after exercise.

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF