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Abstract 
Event detection based on using features from a static grid can give poor results from the viewpoint of two 
main aspects: the position of the camera and the position of the event that is occurring in the scene. The 
former causes problems when training and test events are at different distances from the camera to the actual 
position of the event. The latter can be a source of problems when training events take place in any position in 
the scene, and the test events take place in a position different from the training events. Both issues degrade 
the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for 
event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid 
method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a 
Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the 
proposed method can detect the four types of event patterns with high accuracy. Additionally, the 
performance of the proposed method is better than the static grid method and the proposed method achieves 
higher accuracy than the previous method regarding the aforementioned aspects. 
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1. Introduction 

The main objective of event detection is to monitor and detect events for the safety and security [1] of 
human life and property. This is achieved by using surveillance-based security [2,3]. A traditional 
surveillance system can detect events for security, but it has the limitations of human error associated 
with long monitoring times (fatigue), time consumption, and labor intensity [4]. Therefore, it would be 
advantageous if the events were automatically detected. Automatic detection can process events based 
on two main parts [5]: event indexing by using feature extraction and event classification. One 
important step is the extraction of features [6,7], which is used not only for the object detection and 
tracking step but also for the event classification part. In order to achieve strong point detection, good 
feature extraction is desirable [8,9]. This good extraction gives better results in high quality features, 
which directly relate to high detection accuracy [10]. The methods that are used to extract features for 
analysis can be broadly classified into two main groups: non-grid-based and grid-based methods. 
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The former is a method of extracting features within a frame/image without segmenting a frame/ 
image. This non grid-based method yields results with coarse features. The latter is a method of 
extracting features by segmenting a frame/image into small subregions called “grids,” which are used to 
extract features in order to detect events. The grid-based method can narrow down the dimensions of 
the feature vector [11], which changes in relation to spatial information. The spatial information 
features that are extracted using the grid deal with the problem of a high number of dimensional vectors 
and computation complexity; all of which directly impact accuracy. However, the grid-based method 
has two key limitations: camera position dependency and the variable position of the event taking place 
in the scene. The former relates to features extracted from different distances of training and test events 
between the position of the camera and the position of the event. The latter relates to the position of the 
training event, which can take place at any position on the screen, while the position of the test event 
may happen in a different position. Both key problems degrade detection accuracy. 

Therefore, the dynamic grid method is proposed to robustly detect event patterns with regards to 
camera position dependency and the variable position of the event that is taking place. Regarding the 
experimental results for the position of the camera, the static grid and dynamic grid methods achieve 
detection accuracies of 58.00% and 78.00%, respectively. For the position of the event taking place, the 
static grid and dynamic grid methods result in detection accuracies of 55.00% and 75.00%, respectively. 

This paper is organized as follows. Section 2 concerns related works on event detection based on a 
technique used to extract features and to then use those features to detect events. Section 3 describes the 
event patterns. Section 4 presents the proposed conceptual framework as well as the proposed 
algorithm. Section 5 shows the experimental results, and conclusions are provided in Section 6. 

 
 

2. Related Works 

This section presents research related to a technique used to extract a set of features for the detection 
of events and shares the details from other research on this topic. An event is defined as the occurrence 
of a specific action performed by a subject in a particular place during a particular time frame [12]. 
Events are detected for the purpose of security for two key reasons [13-15]: warning of known 
threatening events [14,15] and searching for events of interest after the event has taken place. 
Automatic event detection is broadly clustered into two types: event detection based on the analysis of 
features from a frame without segmentation, called a “non-grid,” and event detection by the analysis of 
features from a frame that is segmented into a small region, called a “grid.” The non-grid-based method 
[16,17] can detect events by using a set of features extracted from a frame that is not segmented, while 
the grid-based method can detect events by using a feature extracted from the frame, which is 
segmented into small regions based on a pre-defined size.  

Saykol et al. [18] proposed a motion appearance mask with a grid size of 8×8 to extract the features 
from a keyframe. The motion appearance mask could label the motion as four types of simple events: 
join, split, move, and stop. The result after using the proposed mask is a sequence of keyframe labels, 
which are used as the input for the finite state machine to classify the event into three types: crossover, 
deposit, and pickup. The challenging aspect of the work is the selection of the grid size, which is a 
crucial requirement for effectively representing the motion.  

Zhang et al. [19] presented a method to detect abnormal behavior in a crowd by using two key 
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features: moving position and direction. Both features, which are extracted from the scene divided into 
an 1812 grid, are fed into a neural network in order to detect four types of abnormal events: stampede, 
fall, panic, and fight. This work includes the crucial point for the size of the space-time feature, which 
balances the descriptive capability and complexity of the model.  

Wang et al. [20] introduced a method to detect a gathering event by using a moving region as a 
feature. The proposed method divides a video scene into nine blocks (groups of cells), and it is able to 
extract the feature from all blocks. After that, the sets of features are fed into a hidden Markov model in 
order to detect the gathering event. Wang and Wang [21] proposed a similar method to detect a 
gathering event. This proposed method also divides the video scene into nine blocks, but all of these 
blocks are used to extract a set of features used to detect the gathering event using a two-layer hidden 
Markov model.  

Wang and Miao [22] presented a method to detect abnormal behavior automatically and proposed a 
3D grid structure to model the motion patterns by dividing the video frame into a 2015 grid size. For 
each block, the motion is extracted and represented by a motion vector. The motion vectors from all 
blocks are used to generate a histogram of motion vectors, which is then used to identify abnormal 
behavior. The important factor affecting detection accuracy is the position of the camera. Moving 
people are close to or far away from the position of the camera, which relates to the magnitude of the 
motion vectors and affects detection performance.  

Reddy et al. [23] presented an anomaly detection technique by using three features: foreground 
speed, size, and texture, which are extracted from the grid cells for each frame. The detection results of 
the proposed method rely on the grid size. The grid size is considered an issue because the size that is 
used to detect anomaly events directly impacts the detection accuracy relating to image resolution, 
change of perspective, and angle of view. One research paper [24] proposed a framework for the 
detection and localization of crowd behavior based on optical flow by using a grid size of 2424 for 
obtaining the features of magnitudes, positions, and directions, which were then used to detect and 
localize escape events. The detection performance of the proposed method heavily depends on the 
positions of the cameras; if the event is detected far from the position of the camera, the detected event 
will be downscaled.  

From the exploration of previous research based on grid sizes and the methods of frame/scene 
segmentation, which are summarized in Table 1, it can be seen that all of them can detect events by 
extracting features from small subregions after frame/scene segmentation. However, event detection 
based on frame/scene segmentation provides low detection accuracy due to two main issues: camera 
position dependency and the variable positions of the event that is taking place. The former relates to  

 
Table 1. Event detection from previous research 

Research # of grids Detection/classification technique Features used 
[18] 64 (88) Rule-based and finite state machine Low level features 
[19] 216 (1812) Neural network Low level features (moving pixels) 

[20,21] 9 (33) Hidden Markov model Low level features 

[22] 300 (2015) Template-based (motion histogram) Motion vectors 

[23] 9 (33) Classifier-based Speeds, sizes, textures 
[24] 576 (2424) Model-based Motion features (magnitudes, positions, 

and directions) 
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training and test events where the camera is in a different position. This yields a result with low 
detection accuracy if the camera at the detection area is not installed in an appropriate position. The 
latter concerns the lack of ability to detect the variety of possible positions for the event that is taking 
place in the scene. If the training event takes place in the corner of the frame, the grid-based method 
cannot successfully detect an event that takes place in the middle of the frame. Therefore, both main 
issues directly affect the event detection performance using the grid-based method. 

 
 

3. Event Patterns 

This section shows the event patterns of interest in our work and provides the definitions and key 
characteristics of event patterns. Although there are several types of event patterns in a real situation, 
event patterns can be grouped into four main types: implosion, explosion, two-way, and one-way. 
Therefore, this research focuses on these four event patterns, as shown in Fig. 1. 

 

 
Fig. 1. Types of event patterns. 

 
Fig. 1 shows the four event patterns, namely implosion, explosion, two-way, and one-way. Each 

pattern is modeled based on a directed graph as shown below.  
Given ,,, CBA DGDGDG  and DDG  are directed graphs defined, as shown in Eqs. (1)-(4). 
 

        nivsEvvVsSEVSDG iAnAA ,...,1,,,,...,,,,, 1                (1) 
  

        mjtuEtTuuUETUDG jBmBB ,...,1,,,,,...,,,, 1                                 (2) 
 

        oloqlpxwExxXwwWEXWDG qpColCC  ;,...,1;,...,1,,,,...,,,...,,,, 11    (3) 
 

        krkhrgzyEzzZyyYEZYDG hgDtrDD  ;,...,1;,...,1,,,,...,,,...,,,, 11              (4) 
 
All event patterns, implosion, explosion, two-way, and one-way, are modeled based on directed 

graphs, as shown in Eqs. (5)-(8), respectively.  
 

           2deg0deg0deg2deg   UUTTIImplosion                       (5) 
 

           2deg0deg2deg0deg   VVSSEExplosion                        (6) 
 

           1deg0deg1deg0deg   XXWWTwayTwo                          (7) 
 

           0deg1deg1deg0deg   ZZYYOwayOne                         (8) 

Event patterns

Implosion Explosion Two-way One-way
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The four event patterns that are modeled based on directed graphs are depicted in Fig. 2. The 
explosion pattern contains a lot of motion, with people moving from one point in various directions 
[8,25,26], as demonstrated in Fig. 2(a). The implosion pattern is defined as events that move from any 
direction towards a position at a certain destination [17,27], as shown in Fig. 2(b). Two-way has two 
dominant motions [28], some people move in a forward direction while others move in the opposite 
direction [26,29], as shown in Fig. 2(c). One-way has significant motion in only one direction [30], as 
depicted in Fig. 2(d). 

 

  
(a)                                             (b)                                             (c)                                               (d) 

Fig. 2. Event patterns: (a) explosion, (b) implosion, (c) two-way, and (d) one-way. 
 
 

4. Proposed Framework 

Fig. 3 shows the proposed framework for event detection, which is composed of two major parts: 
training and classification. The details of both parts are depicted in Fig. 3. The main objective of the 
training part is to generate a reference model that is used to classify the events in the classification part. 
The training part has three important steps: feature extraction, feature vector construction, and event 
model generation. The feature extraction step provides results with two significant features: frequency 
and direction. The former is acquired by using the dynamic grid proposed in this research to tackle the 
problems of the position in which the event takes place and the position of the camera, as shown in 
Algorithm 1. The latter is taken from the histogram bin, as shown in Algorithm 2. In the next step, both 
frequency and direction features are used to construct a set of feature vectors. Finally, the feature vector 
is used by the support vector machine to generate the event model that is used in the classification part.  

 

 
Fig. 3. A framework of event detection based on a dynamic grid. 

Feature 
extraction

Dynamic 
grid

8-bin 
direction

Feature vector 
construction

Event model 
generation

(SVM)

Event 
reference 

model

Event 
classification

(SVM)

Frequency

Direction

Feature vector

Feature vector

Event model

Reference 
model

{Explosion, Implosion, Two-way, One-way}

Event training

Event classificationUnknown video

Input video

Motion 
position

Motion 
position



Jitdumrong Preechasuk and Punpiti Piamsa-nga 
 

 

J Inf Process Syst, Vol.11, No.4, pp.538~555, December 2015 | 543 

Algorithm 1. Dynamic grid 

Input: A set of motion positions of moving persons )(n ,   nipp
ii yx ,...,1,,  in the current frame and 

the number of the grid’s line  D  for dividing  

Output:   Djss
jj yx ,...,1,,  is the position of the dynamic grid’s line to divide on the x-axis and y-axis 

1: 0,0 
jj yx ss  

2: Calculate the mean of the x-axis, 
n

p
n

i x
x

i  1  

3: Calculate the standard deviation of the x-axis,  
n

p
n

i xx
x

ii 


 1
2

  

4: Calculate the mean of the y-axis, 
n

p
n

i y
y

i  1  

5: Calculate the standard deviation of the y-axis,  
n

p
n

i yy
y

ii 


 1
2

  

6: Compute the position of the dynamic grid line to divide on the x-axis based on the parameters 

xx  , and D  

7:  xxxx jj
cFs  ,|1  where, dtec

jx

x

x

j

s t

x
x 






2

2

2
)(

2
1 




 

8: Compute the position of the dynamic grid line to divide on the y-axis based on the parameters  

yy  , and D  

9:  yyyy jj
cFs  ,|1

  where, dtec
jy

y

y

j

s t

y
y 






2

2

2

)(

2
1 




 

10: Compute  yx ss ,  of the next frame and go to line number 1 

 
The main objective of the classification part is to classify the four event patterns. During 

classification, the unknown feature vector and event model are used to detect the event patterns.  
 

Algorithm 2. Direction histogram bins 

Input: A set of positions of moving persons )(n , ),(
ii yx pp , ni ,...,1 in the current frame 

Output: Directional Bins  B   

1: 9sizeBin  //set bin size 

2:   sizej BinjbB ,...,1,   // allocate bin 

3: 
1


ii xxx ppdelta , i = the current frame, 1i = the previous frame 

4: 
1


ii yyy ppdelta , i = the current frame, 1i = the previous frame 

5:   sizek BinkdD ,...,1,   

6: 0_ dirnon  
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7: IF xdelta = 0 AND ydelta = 0 //calculate the angle of the direction 

8: dirnonangle _   

9:   ELSE  xy deltadeltaangle ,arctan  

10: END IF 
11: IF   0angle AND  8angle OR   8angle AND  0angle  

12: 111  dd  

13: ELSE IF  8angle AND  83angle  

14:  122  dd  

15: ELSE IF  83angle AND  85angle  

16:  133  dd  

17: ELSE IF  85angle AND  87angle  

18: 144  dd  

19: ELSE IF   87angle AND  angle OR   angle AND  87angle  

20: 155  dd  

21: ELSE IF  8angle  AND  83angle  

22:  166  dd  

23: ELSE IF  83angle AND  85angle  

24:  177  dd  

25: ELSE IF  85angle AND  87angle  

26: 188  dd  

27: ELSE 199  dd  

28: END IF 
29: FOR 1l  TO sizeBin  

30:  ll db   
31: END FOR 

 
 

5. Experiments 

The experiments were conducted using two features, frequency and direction, which were obtained 
based on the dynamic grid and histogram bin, respectively. The experiments were composed of two 
parts: event detection based on the dynamic grid and a comparison of the results. The main objective of 
the experiments was to verify that the dynamic grid can be used to detect events and can tackle the two 
major problems related to the position of the camera and the position of the event taking place. 

 
5.1 Dataset 

 
Our experiment is based on the Multimedia Analysis and Discovery (MAD) pedestrian dataset [31]. 

It is comprised of four major event patterns: implosion, explosion, two-way, and one-way, as shown in 
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Table 2. There are five positions for an event taking place within a scene for implosion and explosion 
patterns: center, top left, top right, bottom left, and bottom right. There are four positions for an event 
taking place for both two-way and one-way patterns: horizontal, vertical, diagonal left, and diagonal 
right. In the second column of the table, NC and FC stand for the positions of the event that took place, 
which are close to and far from the position of the camera, respectively.  For implosion patterns that 
occur in the center of the scene, there are 20 and 29 clips for close to the camera and far from the 
camera, respectively. 

 
Table 2. Details of the dataset 

Event types 
Position of event taking place Total 

(#clips) Center
(NC, FC) 

Top left
(NC, FC) 

Top right
(NC, FC) 

Bottom left
(NC, FC) 

Bottom right 
(NC, FC) 

Implosion 20,29 16, 34 17, 32 15, 32 15, 30 240 

Explosion 20,27 16, 33 15, 34 14, 29 15, 32 235 

 Horizontal
(NC, FC) 

Vertical 
(NC, FC) 

Diagonal left 
(NC, FC) 

Diagonal right
(NC, FC) 

-  

Two-way 26, 28 28, 26 18, 14 20, 12 - 172 

One-way 27,17 29, 40 13, 25 16, 15 - 182 

TOTAL 829 

NC denotes close to the position of the camera and FC denotes far from the position of the camera.  
 

5.2 Performance Evaluation 
 
To evaluate the performance of the proposed method, we used detection accuracy as well as recall and 

precision. Detection accuracy is defined as the percentage of correctly detected events over the entire set 
of instances. Let TP denote true positive, which is defined as the number of instances correctly detected 
from a given test set, while TN represents true negative. Let FP represent false positive, which is defined 
as the number of instances that are incorrectly detected from a given test set, while FN  denotes false 
negative. Therefore, )( FNTPTPRecall  and )( FPTPTPPrecision  . 

 
5.3 Experimental Results 

 
For the implementation of the system, the experiments were run on a Windows2008 system with a 

16-core, 2.4 GHz Intel processor, and 96 GB of memory. The experiments were tested on MATLAB 
2009b, which includes an image processing toolbox. In the experiment, we used two features, the 
frequency from the dynamic grid and the direction from the histogram bin, to identify four event 
patterns based on the assumption that the dynamic grid-based features can work with robustness 
regarding two key aspects of the position of the camera and the position of the event taking place.  

The average accuracy, recall, and precision of the test sets were obtained for the performance 
measurement. According to the two main aspects of interest in our experiments, we varied the grid sizes 
used to detect the four event patterns using the dynamic grid in order to study whether the grid size 
would affect detection accuracy regarding the two aspects. We also compared the results of the event 
detection using the dynamic grid-based method and the previous algorithm.  
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5.3.1 Results from the dynamic grid-based method 
 
During the experimentation, the proposed method that used a dynamic grid, was tested to identify 

the four major event patterns. In training and testing our detection method, the experiments employed 
the leave-one-out cross-validation process, wherein the data was split into two sets in which one set was 
used for training and the other for testing. The dynamic grid method was compared to the static grid 
method. The experiments were conducted with regards to two major aspects: the position of the camera 
and the position of the event taking place. The detection results for both aspects are described as 
follows. 

 
5.3.1.1 Results for the position of camera 

In the experiment relating to the position of the camera, the data used to classify the event patterns 
regarding the position of the camera included two distances: near and far. For each distance used in the 
test that used the dynamic grid-based method, the sizes of the grid were varied (33, 55, 77, 99, and 
1111). In our experiment, if the training and test events had the same distance between the position of 
the camera installation and position of event scene, the training and test events were tested using the 
same distance. However, if the training and test events had a different distance between the position of 
the camera installation and the position of the event scene, the training and test events were tested with 
different distances. The results are based on the measurements of the detection accuracy, recall, and 
precision of the four patterns, as shown in Table 3 and Figs. 4–7.  

Table 3 shows the detection accuracy for four event patterns based on the dynamic grid (proposed) 
and static grid [32] methods. The static grid method was able to detect the four event patterns with a 
high accuracy if the training and test data had the same distance between the position of the camera 
installation and the position of the event scene, but the static grid method provided results with poor 
accuracy when the training and test data had a different distance between the position of the camera 
and the event scene.  

For the results from the dynamic grid method, although the distance between the position of the 
camera and position of the event scene had a different distance in the training and test set, event 
detection with the dynamic grid method provided results with a high accuracy. This implies that the 
dynamic grid method is robust regarding the distance between the position of the camera installation 
and position of the event scene.    

 
Table 3. Detection accuracy for position of camera 

Methods 
Accuracy 

Implosion Explosion Two-way One-way 

Static grid [32]     

Test with the same distance 0.77 0.76 0.73 0.76 

Test with a different distance 0.43 0.44 0.35 0.40 

Dynamic grid (proposed)     

Test with the same distance 0.78 0.80 0.82 0.79 

Test with a different distance 0.77 0.76 0.77 0.75 
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Figs. 4–7 show the detection results based on the recall and precision of the four event patterns, 
implosion, explosion, two-way, and one-way, respectively. The static grid method gave better detection 
results with a high recall and precision when the training and test events had the same distance between 
the position of the camera installation and position of the event scene. However, this method provided 
poor results with regards to recall and precision when the events in both the training and test set had 
different distances. 

The results of the dynamic grid method, including both test cases, and the results of the static grid in 
the case of testing with the same distance, produced insignificantly different recall and precision. This 
implies that the dynamic grid method can detect the four event patterns with higher robustness ability 
with regards to the variation of the distance between the position of the camera installation and the 
position of the event scene. 

 

 
Fig. 4. Detection results for the implosion pattern. 

 

 
Fig. 5. Detection results for the explosion pattern. 
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Fig. 6. Detection results for the two-way pattern. 

 

 
Fig. 7. Detection results for the one-way pattern. 

 
5.3.1.2 Results for the position of the event 

For the experiment regarding the aspect of the position of the event occurring in the scene, the data 
for the four patterns included the possibility of the event taking place in various positions within a 
frame or a scene. For explosion and implosion patterns, both event patterns can take place in five 
positions: center, top-right, top-left, bottom-left, and bottom-right. For two-way and one-way patterns, 
both event patterns are possible for either pattern to move in the horizontal, vertical, diagonal left and 
diagonal right directions. In the experiments for both static and dynamic grids, the grid size was varied 
for each event pattern for both methods (33, 55, 77, 99, and 1111). For this experiment, if both 
training and test events had a similar position, the test was done using the same position of the event, 
while if the training event took place in any position in the scene and the test event used a different 
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position of the event taking place. The results for this aspect regarding the detection of the four patterns 
are based on the detection accuracy, recall, and precision, as shown in Table 4 and Figs. 8–11. 

Table 4 shows the detection results of the four patterns from the proposed dynamic grid and the static 
grid methods. The static grid method could detect four event patterns with a high accuracy if the 
training and test events have the same position, but the static grid has the limitation that it gave results 
with poor accuracy when the event used to train the model and the test event used for detection took 
place in a different position. This implies that if both the training and test events have different 
positions, the accuracy is degraded. 

The dynamic grid gave detection results with a high accuracy in two cases: when the training and test 
events took place in the same position in the scene and when the training and test events occurred in a 
different position in the scene. The results of the dynamic grid from both cases were not significantly 
different, which means that it is more accurate than the static grid method when the training and test 
events take place in different positions in the scene. This implies that the dynamic grid method 
outperforms the static method in its robustness ability regarding the position of the event taking place. 

 
Table 4. Detection accuracy for position of event 

Methods 
Accuracy 

Implosion Explosion Two-way One-way 
Static grid [32]     

Test with the same position of event 0.75 0.75 0.77 0.69 
Test with a different position of event 0.43 0.42 0.26 0.33 

Dynamic grid (proposed)     
Test with the same position of event 0.77 0.81 0.79 0.81 
Test with a different position of event 0.76 0.77 0.67 0.62 

 
 

Figs. 8–11 illustrate the detection results based on recall and precision for the four event patterns, 
implosion, explosion, two-way, and one-way, respectively, in regards to the static grid and dynamic grid 
methods. The static grid method, in the case of training and test events taking place in the same position 

 

 
Fig. 8. Detection results for the implosion pattern. 
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in the scene, had better recall and precision than the static grid method when training and test events 
had a different position, and for the detection of all types of patterns. This implies that the static grid 
method has limitations with regards to the aspect of the different positions of the event taking place, 
which means that it can result in a degraded performance. 

The dynamic grid method, including both cases of testing with the same position and testing with a 
different position of the event, provided better recall and precision than the static grid method in the 
case of testing with a different distance. This implies that the dynamic grid method is more robust than 
the static grid method when events in training and testing have different positions in the scene. 

 

 
Fig. 9. Detection results for the explosion pattern. 

 

 
Fig. 10. Detection results for the two-way pattern. 
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Fig. 11. Detection results for the one-way pattern. 

 

5.3.2 Comparison results 
 
To evaluate the performance of the proposed method, the dynamic grid was tested for the detection 

of event patterns regarding the problems that arise in the relationship between the two key aspects: the 
position of the camera and the position of the event. In the experiment, we evaluated the performance 
of the dynamic grid method compared with the previous method [18] by using five-fold, five-times 
cross-validation, in which the dataset was divided into five sets. One set was used for testing and the 
other four sets were used for training. The experiments were tested with five repetitions of the five sets 
used for training.  

For the performance comparison of event detection, the dynamic grid method was compared with 
the previous method [18] based on the assumption that event types that were used for comparison 
against should share important characteristics of motion. Furthermore, the same types of events sharing 
the main characteristics of motion may be labeled differently in other research. In the results 
comparison, the proposed method was compared to the past research [18] based on using the two-way 
event pattern. The detection accuracy, recall, and precision were measured for the performance 
evaluation of the comparison results and based on the two major aspects the comparison results are 
shown in Table 5, Figs. 12 and 13. 

Table 5 shows the comparison results of the dynamic grid method and the previous research [18]. As 
shown in Table 5, the method in [18] could detect events with low accuracy when training and test data 
had the same distance between the position of the camera and the event scene and the same position for 
the event taking place in the frame. Also, the method in [18] provided detection results with a very low 
accuracy when the training and test events had different distances between the position of the camera 
and the event scene and different positions for the event taking place.  

The dynamic grid method yielded results with a high accuracy for both the same and different 
positions of the camera and positions of the event. This implies that the dynamic grid method can 
detect events with a high accuracy, independent of the problems arising from the position of camera 
and the position of the event taking place. 
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Fig. 12 illustrates the comparison results regarding the aspect of the position of the camera based on 
the recall and precision of the dynamic grid method and the previous research [18]. The dynamic grid 
method outperforms the previous research [18] in tests with the same distance and tests with different 
distances. It can be concluded that the dynamic grid method can detect events with robustness, even in 
regards to the problem of camera position dependency.  

 
Table 5. Comparison results based on detection accuracy 

Methods 
Accuracy 

Position of camera Position of event taking place 
Method [18]   

Test with the same position of event 0.56 0.46 
Test with a different position of event 0.29 0.20 

Dynamic grid (proposed)   
Test with the same position of event 0.81 0.77 
Test with a different position of event 0.80 0.62 

  

 
Fig. 12. Detection results for position of camera. 

 

 
Fig. 13. Detection results for position of event. 
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Fig. 13 shows the comparison results with regards to the aspect of the position of the event taking 
place for the dynamic grid method and the previous research [18]. The dynamic grid provided higher 
recall and precision when tested with both the same and different positions of the event taking place 
compared to previous research [18]. In summary, the dynamic grid method is unaffected by the 
position of the event taking place in the frame.     

 
 

6. Conclusion 

This work proposes a method for event detection by using the frequency feature from a dynamic grid 
and the direction features from the histogram bins. The proposed method can detect four events, 
namely explosion, implosion, two-way, and one-way. The proposed method can detect events 
independently of the problems arising from the position of the camera and the position of the event 
taking place. Both of these key issues can affect and degrade the performance of the static grid method. 
From the experimental results, event detection based on a dynamic grid provides more accurate results 
than detection based on a static grid, for which the accuracy will decrease due to two key issues: the 
position of the camera and the position of the event taking place. It can be concluded that the dynamic 
grid method can detect event patterns in spite of the problems caused by these two key issues, and it can 
also be used to enhance the performance of the static grid method. Moreover, the dynamic grid method 
outperforms the previous research with regards to the detection of event patterns concerning these two 
key issues.  

For further research, an adaptive grid-based model could be created for the detection of several other 
interesting event patterns or more than two event patterns occurring at the same time in the scene, 
which is a challenging event pattern to detect.  
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