• Title/Summary/Keyword: static loads

Search Result 1,049, Processing Time 0.025 seconds

Structural Optimization of the Pelvis in a Humanoid Considering Dynamic Characteristics (동적 특성을 고려한 휴머노이드 펠비스의 구조최적설계)

  • Hong, Eul-Pyo;You, Bum-Jae;Kim, Chang-Hwan;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1344-1349
    • /
    • 2007
  • Biped humanoids maintain their stability through precise controls during locomotion or operation. Dynamic forces are applied to the humanoid structure during locomotion or operation. If the humanoid has weakness from a structural viewpoint, these forces cause severe deformation or vibration of the structure, which can make the humanoid unstable. In this research, a design scenario is proposed to design a robust humanoid structure under the dynamic loads. The pelvis part is selected for design practice. Multibody dynamics is adopted to calculate the dynamic loads and a structural optimization technique is employed to design the pelvis structures. Since it is extremely difficult directly consider the dynamic loads in the optimization process, equivalent static loads are evaluated from the dynamic loads and the design result are discussed.

  • PDF

Numerical analysis of a long-span bridge response to tornado-like winds

  • Hao, Jianming;Wu, Teng
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.459-472
    • /
    • 2020
  • This study focused on the non-synoptic, tornado-like wind-induced effects on flexible horizontal structures that are extremely sensitive to winds. More specifically, the nonuniform, intensive vertical wind-velocity and transient natures of tornado events and their effects on the global behavior of a long-span bridge were investigated. In addition to the static part in the modeling of tornado-like wind-induced loads, the motion-induced effects were modeled using the semi-empirical model with a two-dimensional (2-D) indicial response function. Both nonlinear wind-induced static analysis and linear aeroelastic analysis in the time domain were conducted based on a 3-D finite-element model to investigate the bridge performance under the most unfavorable tornado pattern considering wind-structure interactions. The results from the present study highlighted the important effects due to abovementioned tornado natures (i.e., nonuniform, intensive vertical wind-velocity and transient features) on the long-span bridge, and hence may facilitate more appropriate wind design of flexible horizontal structures in the tornado-prone areas.

Large Eddy Simulation on the Drag and Static Pressure Acting on the Blade Surface of Three-Dimensional Small-Size Axial Fan with Different Operating Loads (운전부하에 따른 3차원 소형축류홴 날개표면에 작용하는 정압과 항력에 대한 대규모와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2017
  • The large-eddy simulation(LES) was carried out to evaluate the drag and static pressure acting on the blade surface of a small-size axial fan(SSAF) under the condition of unsteady-state, incompressible fluid and three-dimensional coordination. The axial component of drag coefficient increases with the increase of operating load, but the radial components have negligible sizes regardless of operating loads. Otherwise, the static pressures acting on the blade surfaces of SSAF show different distributions around the operating point of D equivalent to the stall. Also, with the increase of operating load, the static pressures acting on the pressure and suction surfaces of blade concentrate at the tips and leading-edges as a whole.

Nonlinear Dynamic Response Structural Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중법을 이용한 차량 전면 구조물의 비선형 동적 반응 구조최적설계)

  • Yoon, Shic;Jeong, Seong-Beom;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1156-1161
    • /
    • 2008
  • Nonlinear dynamic analysis is generally used in automobile crash analysis and structural optimization considering crashworthiness uses the results of nonlinear dynamic analysis. Automobile crash optimization has high nonlinearity and difficulty in calculating sensitivity. Recently the equivalent static load (ESL) method has been proposed in order to overcome these difficulties. The ESL is the static load set generating the same displacement field as the nonlinear dynamic displacement field at each time step in dynamic analysis. From various researches regarding the ESL method, it has been proved that the ESL method is fairly useful. The ESL method can mathematically optimize a crash optimization problem through nonlinear analysis and well developed static optimization. The ESL is applied to nonlinear dynamic structural optimization of the automobile frontal impact problem. An automobile bumper is optimized. The mass of the structure is minimized while some constraints are satisfied.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Equivalent static wind loads analysis of tall television towers considering terrain factors of hilltops based on force measurement experiment

  • Ke, Shitang;Wang, Hao;Ge, Yaojun;Zhao, Lin;Cao, Shuyang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.509-519
    • /
    • 2017
  • Wind field in mountainous regions demonstrates unique distribution characteristic as compared with the wind field of the flat area, wind load and wind effect are the key considerations in structural design of television towers situated in mountainous regions. The television tower to be constructed is located at the top of Xiushan Mountain in Nanjing, China. In order to investigate the impact of terrain factors of hilltops on wind loads, firstly a wind tunnel test was performed for the mountainous area within 800m from the television tower. Then the tower basal forces such as bending moments and shear strength were obtained based on high frequency force balance (HFFB) test. Based on the experiments, the improved method for determining the load combinations was applied to extract the response distribution patterns of foundation internal force and peak acceleration of the tower top, then the equivalent static wind loads were computed under different wind angles, load conditions and equivalent goals. The impact of terrain factors, damping ratio and equivalent goals on the wind load distribution of a television tower was discussed. Finally the equivalent static wind loads of the television tower under the 5 most adverse wind angles and 5 most adverse load conditions were computed. The experimental method, computations and research findings provide important references for the anti-wind design of high-rise structure built on hilltops.

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

A Comparative of Ground Stress with Difference of the Fixed Point Loading and Moving Wheel Loading (모형실험을 통한 고정 및 이동하중 재하 방법에 따른 노반 변형거동 비교)

  • Choi, Chan-Yong;Shin, Eun-Chul;Eum, Ki-Young;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, it was compared the characteristics of the stress and settlement that occur from a track on the ground using a model test and has quantitatively analyzed the difference based on stress path and effect of the rotation of principal stress. Under identical roadbed conditions, the settlement generated by moving wheel loads were found to be 6 times and 3 times larger than that from static loads and cyclic loads, respectively. The deviator stress affecting shear deformation and the length of stress path generated by moving loads were twofold or greater increase than those by static loads. Furthermore, the stress path generated by moving loads was approached more closely to Mohr-Coulomb failure criteria compared to that by static loads. Also, it was found that ballasted track was occurred about 60% of maximum stress at $40^{\circ}$ of the rotation angle of principal stress and was affected with rotation of principal stress with moving wheel loading condition.

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.