• Title/Summary/Keyword: static load ratio

Search Result 339, Processing Time 0.027 seconds

Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade (끝벽의 설치 위치 및 변형 높이에 따른 환형 터빈 노즐 안내깃 캐스케이드 내 3차원 유동에 미치는 영향에 관한 수치해석)

  • Lee, Wu-Sang;Kim, Dae-Hyun;Min, Jae-Hong;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3247-3252
    • /
    • 2007
  • Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance.

  • PDF

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process (Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.

Experimental and theoretical research on mechanical behavior of innovative composite beams

  • Zhu, Gang;Yang, Yong;Xue, Jianyang;Nie, Jianguo
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.313-333
    • /
    • 2013
  • The web-encased steel-concrete composite (WESCC) beam is a new developed steel-concrete composite beam. Experiments of six simply supported WESCC beam specimens were conducted. The effects of the shear-span ratio and steel section type were all investigated on the static behaviors such as failure modes, failure mechanism and bearing capacity. The experimental results denoted that all specimens failed in bending mode and the degree of combination between the bottom armor plate of steel shape and concrete were very well without any evident slippage, which demonstrated that the function of bottom armor plate and web were fully exerted in the WESCC beams. It could be concluded the WESCC beams have high stiffness, high load carrying capacity and advanced ductility. The design methods are proposed which mainly consist the bearing capacity calculation of bending and flexural rigidity. The calculation results of the bearing capacity and deflection which take the shear deflection into account are in agreement with the experimental results. The design methods are useful for design and application of the innovative composite beams.

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Proposed Seismic Performance Evaluation Enhancement for Existing School Building (기존 학교 건축물의 내진성능평가 및 보강방안 제안)

  • Hwang, Ji-Hoon;Jang, Jeong-Hyun;Yang, Kyeong-Seok;Choi, Jae-Hyouk
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.4
    • /
    • pp.29-38
    • /
    • 2012
  • Recently large scale earthquake s are occurred around the world following the damage of buildings. So the interest of preparing for earthquake seismic design and seismic performance has becoming high. School buildings are though used for educational purpose; they are also used as emergency shelter for local residents during earthquake disaster. However, the current seismic design ratio of our country (Korea) is 3.7% and if massive earthquake is occurred it follows a serious damage. In order to overcome this situation, seismic performance evaluation is carried out for existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear static analysis on existing school buildings for ATC-40 and FEMA-356 are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to verify the effect of retrofit enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effect of seismic retrofit time history analysis using nonlinear dynamic analysis is also performed and nonlinear behavior of earthquake load of seismic retrofit of structures was also investigated.

Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks (장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향)

  • Choi, Dong Ho;Kim, Ho Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.727-736
    • /
    • 2000
  • The present study investigates the influences of vehicle induced loads on the thermal buckling behavior of straight and curved continuous welded rail (CWR) tracks. Quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deflection induced by wheel loads of vehicle. The lateral loads of vehicle induced by weight, the speed, the superelevation and curvature of track, and other dynamic vehicle track interaction, are included in the ratio of lateral to vertical vehicle load. Parametric numerical analyses are perfomed to calculate the upper and lower critical buckling temperatures of CWR tracks, and the comparison between the results of this work and the previous results without vehicle is also included.

  • PDF

Energy Saving Potentials of Radiant Floor Heating Systems Based on Control Strategies (바닥 복사 난방 시스템의 제어전략에 따른 에너지 사용량 분석)

  • Lee, Joon-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.109-114
    • /
    • 2009
  • The dominant heating system used in Korean residential apartment buildings is a hydronic radiant floor heating system, known as the Ondol system. The most common control strategy applied to this traditional hydronic radiant system is a simple on-off control that intermittently supplies "hot water of a fixed temperature" at a "constant flow rate" to each room. However, the current problems with the aforementioned control are as follows: (1) since the simple on-off control is usually based on a one point measured temperature (a signal from a thermostat installed in a living room) in each dwelling unit, heating energy use for unoccupied rooms as well as a difference in temperatures between spaces (master bedroom, living room, bedroom1, bedroom2) can occur occasionally. (2) the most widely used residential water splitter has static valves, and is thus not able to change the flow rate to each room depending on the space heating load. In other words, the ratio of flow rates to rooms is fixed after construction, resulting in over- or under-heating and an improper use of energy. The aim of this paper is therefore to investigate the differences in the system's performance between control strategies in terms of the flow rate control and sensor location. It is shown that energy savings of control strategies are strongly influenced by occupant schedule.

  • PDF

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I))

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF