• 제목/요약/키워드: static force coefficients

검색결과 55건 처리시간 0.024초

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

영각의 변화에 대한 전개판의 정적 안정성 연구 (A study on the static stability of the otter board in relation to the angle of attack)

  • 박창두;안희춘
    • 수산해양기술연구
    • /
    • 제38권3호
    • /
    • pp.234-240
    • /
    • 2002
  • 본 연구에서는 전개판의 영각 변화에 따른 정적안정성에 관하여 이론적 해석을 하였다. 또한 전개판의 형상별 유체력에 의한 정적 안정성을 평가하기 위하여 종횡비가 다른 평판과 만곡도가 다른 종만곡판을 사용하여 회류수조에서 유체력 및 모벤트를 측정하고 형상별 압력중섬계수와 모멘트 계수를 계산하였다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 1. 전개판의 영각($\alpha$) 변화에 따른 끌줄의 장력과 후릿줄의 장력에 의한 모멘트 변화는 전개판을 항상 정적 안정성을 가지도록 작용한다. 2. 종횡비(λ)가 0.5, 1.0, 1.5인 평판의 압력중심계 수는 영각의 증가와 함께 전연에서 중심쪽으로 이동한다. 이것은 유체력에 의한 모멘트는 항상 정적으로 안정하도록 작용한다는 것을 의미한다. 3. 종횡비가 일정(λ=1.5)하고, 만곡도(CR)가 5%, 10%, 15%, 20%인 만곡판의 유체력에 의한 압력중심계수는 영각의 증가와 함께 후연에서 전연쪽으로 이동한 다음, 다시 만곡판의 중심쪽으로 이동한다 만곡판에 작용하는 유체력에 의한 모멘트는 만곡도가 커질수록 정적으로 불안정한 영각의 범위가 증가한다.

자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발 (Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems)

  • 황지수;류근;정승화
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

절단 볏짚의 물리적 성질 (Some Physical Properties of Chopped Rice Straw)

  • 박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.583-590
    • /
    • 1998
  • This study was performed to determine the kinetic friction coefficient bulk density, dynamic and static angle of repose, and terminal velocity of the chopped rice straw in the moisture range of 8~23%, which could be used for better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding the mass of rice straw on the various plate materials. Bulk density was measured with an apparatus consisting of a filling funnel and a receiving vessel. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in the cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice straw on the PVC, mild steel, stainless steel, and galvanized steel were in the range of 0.303~0.434, 0.222~0.439, 0.204~0.448, and 0.206~0.407, respectively. and indicated linear increase with moisture content. The effects of moisture change on the friction coefficients were in the order of PVC, mild steel, galvanized steel, and stainless steel. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of 56.8~60.3 kg/m$^3$, 41.4~45.9$^{\circ}$, 94.4~100.8$^{\circ}$, and 1.07~4.48 m/s, respectively, and were increased linearly with the moisture content.

  • PDF

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

케터너리 제류 부유식 방파제 거동의 시간영성 해석 (Time Domain Analysis of the Motions of Catenary Moored Floating Breakwater)

  • 전인식
    • 한국해안해양공학회지
    • /
    • 제5권3호
    • /
    • pp.182-190
    • /
    • 1993
  • 본 논문에서는 규칙 또는 불규칙파와 정상외력이 3차원적으로 복합되어 있는 외력조건에서 케터너리 계류부체의 6 자유도 운동변위 및 계류장력의 시계열을 계산하기 위한 시간영역해법을 제시하였다. 입사파낭의 무한대 주파수에 대한 부가질량계수, 그리고 파낭감쇠계수와 파낭강제력계수의 주파수에 대한 변화는 특리점분포법을 이용하여 결정하였으며, 이들 계수들을 이용하여 구성되는 시간영역에서의 운동방정식은 Wilson-$ heta$ 기법을 이용하여 해를 구하였다. 시간영역해법의 결과를 정상외력 조건에서 Newton 방법의 해와, 변동외력 조건에서 주파수영역해법의 결과와 각각 비교한 결과 이들이 서로 잘 일치함을 확인하였다. 아울러, 불규칙파 조건에서 일반적인 제원을 갖는 부유식 방파제를 설정하여 본 기법의 적용을 예시하였다.

  • PDF

Galloping analysis of stranded electricity conductors in skew winds

  • Macdonald, J.H.G.;Griffiths, P.J.;Curry, B.P.
    • Wind and Structures
    • /
    • 제11권4호
    • /
    • pp.303-321
    • /
    • 2008
  • When first commissioned, the 1.6 km span 275kV Severn Crossing Conductor experienced large amplitude vibrations in certain wind conditions, but without ice or rain, leading to flashover between the conductor phases. Wind tunnel tests undertaken at the time identified a major factor was the lift generated in the critical Reynolds number range in skew winds. Despite this insight, and although a practical solution was found by wrapping the cable to change the aerodynamic profile, there remained some uncertainty as to the detailed excitation mechanism. Recent work to address the problem of dry inclined cable galloping on cable-stayed bridges has led to a generalised quasi-steady galloping formulation, including effects of the 3D geometry and changes in the static force coefficients in the critical Reynolds number range. This generalised formulation has been applied to the case of the Severn Crossing Conductor, using data of the static drag and lift coefficients on a section of the stranded cable, from the original wind tunnel tests. Time history analysis has then been used to calculate the amplitudes of steady state vibrations for comparison with the full scale observations. Good agreement has been obtained between the analysis and the site observations, giving increased confidence in the applicability of the generalised galloping formulation and providing insight into the mechanism of galloping of yawed and stranded cables. Application to other cable geometries is also discussed.

정전압에 따른 클린룸 벽체에서의 입자침착 특성 (Characteristics of Particle Deposition onto the Cleanroom Wall Panel with Electrostatic Voltages)

  • 노광철;손영태;김종준;오명도
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.1033-1038
    • /
    • 2006
  • We carried out the experiments on particle deposition onto the cleanroom wall panels. And then we investigated the particle deposition characteristic coefficients for electrostatic voltages and particle size. It was found that there is little difference in characteristics of the particle deposition between the steel panel and the anti-static coating panel. In case of that the particle size is under $1.0{\mu}m$, the particle deposition characteristic coefficient becomes larger as the electrostatic voltage induced to the cleanroom wall panel is increasing. Where in case of that the particle size is over $3.0{\mu}m$, the particle deposition characteristic coefficients do not show any differences with the electrostatic voltages. It is due to that the electrostatic force is the major particle transport mechanism for submicron particles, while the gravitational settling is the major particle transport mechanism for overmicron particles when the electro-static voltages are induced to the cleanroom wall panel.

경사안내면 상에서 이송되는 볼나사-슬라이드 이송계의 마찰기인 진동해석 (Analysis of Friction-Induced Vibrations in a Ball Screw Driven Slide on Skewed Guideway)

  • 최영휴
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.88-98
    • /
    • 2014
  • A moving mass on a skewed linear guideway model to analyze the friction-induced stick-slip behavior of ball-screw-driven slides is proposed. To describe the friction force, a friction coefficient function is modelled as a third-order polynomial of the relative velocity between the slide mass and a guideway. A nonlinear differential equation of motion is derived and an approximate solution is obtained using a perturbation method for the amplitudes and base frequencies of both pure-slip and stick-slip oscillations. The results are presented with time responses, phase plots, and amplitude plots, which are compared adequately with those obtained by Runge Kutta 4th-order numerical integration, as long as the difference between the static and kinematic friction coefficients is small. However, errors in the results by the approximate solution increase and are not negligible if the difference between the friction coefficients exceeds approximately 40% of the static friction coefficient.